Author
Listed:
- Christopher A O’Callaghan
Abstract
Minimization is a valuable method for allocating participants between the control and experimental arms of clinical studies. The use of minimization reduces differences that might arise by chance between the study arms in the distribution of patient characteristics such as gender, ethnicity and age. However, unlike randomization, minimization requires real time assessment of each new participant with respect to the preceding distribution of relevant participant characteristics within the different arms of the study. For multi-site studies, this necessitates centralized computational analysis that is shared between all study locations. Unfortunately, there is no suitable freely available open source or free software that can be used for this purpose. OxMaR was developed to enable researchers in any location to use minimization for patient allocation and to access the minimization algorithm using any device that can connect to the internet such as a desktop computer, tablet or mobile phone. The software is complete in itself and requires no special packages or libraries to be installed. It is simple to set up and run over the internet using online facilities which are very low cost or even free to the user. Importantly, it provides real time information on allocation to the study lead or administrator and generates real time distributed backups with each allocation. OxMaR can readily be modified and customised and can also be used for standard randomization. It has been extensively tested and has been used successfully in a low budget multi-centre study. Hitherto, the logistical difficulties involved in minimization have precluded its use in many small studies and this software should allow more widespread use of minimization which should lead to studies with better matched control and experimental arms. OxMaR should be particularly valuable in low resource settings.
Suggested Citation
Christopher A O’Callaghan, 2014.
"OxMaR: Open Source Free Software for Online Minimization and Randomization for Clinical Trials,"
PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
Handle:
RePEc:plo:pone00:0110761
DOI: 10.1371/journal.pone.0110761
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0110761. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.