Author
Listed:
- Jason N Bazil
- Karl D Stamm
- Xing Li
- Raghuram Thiagarajan
- Timothy J Nelson
- Aoy Tomita-Mitchell
- Daniel A Beard
Abstract
Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation.
Suggested Citation
Jason N Bazil & Karl D Stamm & Xing Li & Raghuram Thiagarajan & Timothy J Nelson & Aoy Tomita-Mitchell & Daniel A Beard, 2014.
"The Inferred Cardiogenic Gene Regulatory Network in the Mammalian Heart,"
PLOS ONE, Public Library of Science, vol. 9(6), pages 1-14, June.
Handle:
RePEc:plo:pone00:0100842
DOI: 10.1371/journal.pone.0100842
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0100842. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.