Author
Listed:
- Szi-Wen Chen
- Shih-Chieh Chao
Abstract
In this paper, a reweighted ℓ1-minimization based Compressed Sensing (CS) algorithm incorporating the Integral Pulse Frequency Modulation (IPFM) model for spectral estimation of HRV is introduced. Knowing as a novel sensing/sampling paradigm, the theory of CS asserts certain signals that are considered sparse or compressible can be possibly reconstructed from substantially fewer measurements than those required by traditional methods. Our study aims to employ a novel reweighted ℓ1-minimization CS method for deriving the spectrum of the modulating signal of IPFM model from incomplete RR measurements for HRV assessments. To evaluate the performance of HRV spectral estimation, a quantitative measure, referred to as the Percent Error Power (PEP) that measures the percentage of difference between the true spectrum and the spectrum derived from the incomplete RR dataset, was used. We studied the performance of spectral reconstruction from incomplete simulated and real HRV signals by experimentally truncating a number of RR data accordingly in the top portion, in the bottom portion, and in a random order from the original RR column vector. As a result, for up to 20% data truncation/loss the proposed reweighted ℓ1-minimization CS method produced, on average, 2.34%, 2.27%, and 4.55% PEP in the top, bottom, and random data-truncation cases, respectively, on Autoregressive (AR) model derived simulated HRV signals. Similarly, for up to 20% data loss the proposed method produced 5.15%, 4.33%, and 0.39% PEP in the top, bottom, and random data-truncation cases, respectively, on a real HRV database drawn from PhysioNet. Moreover, results generated by a number of intensive numerical experiments all indicated that the reweighted ℓ1-minimization CS method always achieved the most accurate and high-fidelity HRV spectral estimates in every aspect, compared with the ℓ1-minimization based method and Lomb's method used for estimating the spectrum of HRV from unevenly sampled RR data.
Suggested Citation
Szi-Wen Chen & Shih-Chieh Chao, 2014.
"A Reweighted ℓ1-Minimization Based Compressed Sensing for the Spectral Estimation of Heart Rate Variability Using the Unevenly Sampled Data,"
PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
Handle:
RePEc:plo:pone00:0099098
DOI: 10.1371/journal.pone.0099098
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0099098. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.