IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0090459.html
   My bibliography  Save this article

Comparative Genomic Analysis of Primary and Synchronous Metastatic Colorectal Cancers

Author

Listed:
  • Sun Young Lee
  • Farhan Haq
  • Deokhoon Kim
  • Cui Jun
  • Hui-Jong Jo
  • Sung-Min Ahn
  • Won-Suk Lee

Abstract

Approximately 50% of patients with primary colorectal carcinoma develop liver metastases. Understanding the genetic differences between primary colon cancer and their metastases to the liver is essential for devising a better therapeutic approach for this disease. We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss. The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar somatic copy number alteration patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number alterations. Our results suggest that about half of the metastatic colorectal carcinoma had the same clonal origin with their primary colorectal carcinomas, whereas remaining cases were genetically distinct from their primary carcinomas. These findings underscore the need to evaluate metastatic lesions separately for optimized therapy, rather than to extrapolate from primary tumor data.

Suggested Citation

  • Sun Young Lee & Farhan Haq & Deokhoon Kim & Cui Jun & Hui-Jong Jo & Sung-Min Ahn & Won-Suk Lee, 2014. "Comparative Genomic Analysis of Primary and Synchronous Metastatic Colorectal Cancers," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
  • Handle: RePEc:plo:pone00:0090459
    DOI: 10.1371/journal.pone.0090459
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090459
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0090459&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0090459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jane E. Visvader, 2011. "Cells of origin in cancer," Nature, Nature, vol. 469(7330), pages 314-322, January.
    2. Peter J. Campbell & Shinichi Yachida & Laura J. Mudie & Philip J. Stephens & Erin D. Pleasance & Lucy A. Stebbings & Laura A. Morsberger & Calli Latimer & Stuart McLaren & Meng-Lay Lin & David J. McBr, 2010. "The patterns and dynamics of genomic instability in metastatic pancreatic cancer," Nature, Nature, vol. 467(7319), pages 1109-1113, October.
    3. Peter Carmeliet & Rakesh K. Jain, 2000. "Angiogenesis in cancer and other diseases," Nature, Nature, vol. 407(6801), pages 249-257, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Wu & Haixiang Wu & Xiaoyan Liu & Houwen Lin & Jin Li, 2014. "Ranibizumab versus Bevacizumab for Ophthalmic Diseases Related to Neovascularisation: A Meta-Analysis of Randomised Controlled Trials," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    2. Rocío Vega & Manuel Carretero & Rui D M Travasso & Luis L Bonilla, 2020. "Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-31, January.
    3. Cheng H Lee & Benjamin O Alpert & Preethi Sankaranarayanan & Orly Alter, 2012. "GSVD Comparison of Patient-Matched Normal and Tumor aCGH Profiles Reveals Global Copy-Number Alterations Predicting Glioblastoma Multiforme Survival," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    4. Sanjay M. Prakadan & Christopher A. Alvarez-Breckenridge & Samuel C. Markson & Albert E. Kim & Robert H. Klein & Naema Nayyar & Andrew W. Navia & Benjamin M. Kuter & Kellie E. Kolb & Ivanna Bihun & Jo, 2021. "Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ze-Feng Zhang & Tao Wang & Li-Hua Liu & Hui-Qin Guo, 2014. "Risks of Proteinuria Associated with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer Patients: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    6. Yanying Wang & Jing Wang & Xiaoyu Li & Xushen Xiong & Jianyi Wang & Ziheng Zhou & Xiaoxiao Zhu & Yang Gu & Dan Dominissini & Lei He & Yong Tian & Chengqi Yi & Zusen Fan, 2021. "N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    7. Yi Sun & Yao Wang & Shu Yuan & Jialing Wen & Weiyu Li & Liu Yang & Xiaoyan Huang & Yanmei Mo & Yingqi Zhao & Yuanming Lu, 2018. "Exposure to PM2.5 via vascular endothelial growth factor relationship: Meta-analysis," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-12, June.
    8. Wenhua Liang & Xuan Wu & Shaodong Hong & Yaxiong Zhang & Shiyang Kang & Wenfeng Fang & Tao Qin & Yan Huang & Hongyun Zhao & Li Zhang, 2014. "Multi-Targeted Antiangiogenic Tyrosine Kinase Inhibitors in Advanced Non-Small Cell Lung Cancer: Meta-Analyses of 20 Randomized Controlled Trials and Subgroup Analyses," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    9. Veronica Veschi & Alice Turdo & Chiara Modica & Francesco Verona & Simone Franco & Miriam Gaggianesi & Elena Tirrò & Sebastiano Bella & Melania Lo Iacono & Vincenzo Davide Pantina & Gaetana Porcelli &, 2023. "Recapitulating thyroid cancer histotypes through engineering embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Amr M. Al-Zain & Mattie R. Nester & Iffat Ahmed & Lorraine S. Symington, 2023. "Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Mihoko Saito-Adachi & Natsuko Hama & Yasushi Totoki & Hiromi Nakamura & Yasuhito Arai & Fumie Hosoda & Hirofumi Rokutan & Shinichi Yachida & Mamoru Kato & Akihiko Fukagawa & Tatsuhiro Shibata, 2023. "Oncogenic structural aberration landscape in gastric cancer genomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Hailong He & Christine Schönmann & Mathias Schwarz & Benedikt Hindelang & Andrei Berezhnoi & Susanne Annette Steimle-Grauer & Ulf Darsow & Juan Aguirre & Vasilis Ntziachristos, 2022. "Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Lu Han & Yongxia Wu & Kun Fang & Sean Sweeney & Ulyss K. Roesner & Melodie Parrish & Khushbu Patel & Tom Walter & Julia Piermattei & Anthony Trimboli & Julia Lefler & Cynthia D. Timmers & Xue-Zhong Yu, 2023. "The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Kimio Takeuchi & Ryoji Yanai & Fumiaki Kumase & Yuki Morizane & Jun Suzuki & Maki Kayama & Katarzyna Brodowska & Mitsuru Nakazawa & Joan W Miller & Kip M Connor & Demetrios G Vavvas, 2014. "EGF-Like-Domain-7 Is Required for VEGF-Induced Akt/ERK Activation and Vascular Tube Formation in an Ex Vivo Angiogenesis Assay," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-7, March.
    15. Klaus Eickel & David Andrew Porter & Anika Söhner & Marc Maaß & Lutz Lüdemann & Matthias Günther, 2018. "Simultaneous multislice acquisition with multi-contrast segmented EPI for separation of signal contributions in dynamic contrast-enhanced imaging," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-22, August.
    16. Chaohui Li & Lingxi Chen & Guangze Pan & Wenqian Zhang & Shuai Cheng Li, 2023. "Deciphering complex breakage-fusion-bridge genome rearrangements with Ambigram," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Linda K Sundermann & Jeff Wintersinger & Gunnar Rätsch & Jens Stoye & Quaid Morris, 2021. "Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-28, January.
    18. Harman Ghuman & Kyungsoo Kim & Sapeeda Barati & Karunesh Ganguly, 2023. "Emergence of task-related spatiotemporal population dynamics in transplanted neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Sara G. Romeo & Ilaria Secco & Edoardo Schneider & Christina M. Reumiller & Celio X. C. Santos & Anna Zoccarato & Vishal Musale & Aman Pooni & Xiaoke Yin & Konstantinos Theofilatos & Silvia Cellone Tr, 2023. "Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Sadhukhan, Sounak & Mishra, P.K., 2022. "The notion of fractals in tumour angiogenic sprout initiation model based on cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0090459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.