Author
Listed:
- Jürgen R Schaefer
- Dieter Leussler
- Ludger Rosin
- David Pittrow
- Thomas Hepp
Abstract
Background: Automated complexity-based statistical stroke risk analysis (SRA) of electrocardiogram (ECG) recordings can be used to estimate the risk of paroxysmal atrial fibrillation (pAF). We investigated whether this method could improve the reliability of detection of patients at risk for pAF. Methods and Results: Data from 12-lead ECGs, 24-h Holter ECGs, and SRA based on separate 1-hour Holter ECG snips were collected from three groups: 70 patients with a history of pAF but who showed no AF episode in the 12-lead ECG at study entry; 19 patients with chronic AF (at study entry); and 100 young healthy individuals. AF episodes were detected by Holter ECG in 19 of the 70 non-chronic AF patients (27.1% overall, 18.6% in the first hour), and 37 of these 70 patients were classified as at risk for pAF by SRA (representing a sensitivity of 52.9% based on the first hour of analyzed recording). Fifty-four of the 70 patients also showed a sinus rhythm in the first hour. SRA detected pAF risk in 23 of these 54 patients (representing a sensitivity of 42.6%). The Holter data showed at least 1 AF episode and at least 1 hour of sinus rhythm in nine of the patients with pAF. For these patients, SRA classified 77.8% as being at risk in the first hour after the end of the AF episode, and 71.4% and 42.9% as being at risk in the second and third hours, respectively. SRA detected almost all cardiologist-confirmed AF episodes that had been recorded in 1-hour ECG snips (sensitivity, 99.2%; specificity, 99.2%). Conclusions: This outpatient study confirms previous findings that routine use of SRA could improve AF detection rates and thus may shorten the time between AF onset and initiation of prevention measures for patients at high risk for stroke.
Suggested Citation
Jürgen R Schaefer & Dieter Leussler & Ludger Rosin & David Pittrow & Thomas Hepp, 2014.
"Improved Detection of Paroxysmal Atrial Fibrillation Utilizing a Software-Assisted Electrocardiogram Approach,"
PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
Handle:
RePEc:plo:pone00:0089328
DOI: 10.1371/journal.pone.0089328
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0089328. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.