IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0089318.html
   My bibliography  Save this article

Global Meta-Analysis of Transcriptomics Studies

Author

Listed:
  • José Caldas
  • Susana Vinga

Abstract

Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy), based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF) model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons.

Suggested Citation

  • José Caldas & Susana Vinga, 2014. "Global Meta-Analysis of Transcriptomics Studies," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0089318
    DOI: 10.1371/journal.pone.0089318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089318
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0089318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0089318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilya Kupershmidt & Qiaojuan Jane Su & Anoop Grewal & Suman Sundaresh & Inbal Halperin & James Flynn & Mamatha Shekar & Helen Wang & Jenny Park & Wenwu Cui & Gregory D Wall & Robert Wisotzkey & Satnam , 2010. "Ontology-Based Meta-Analysis of Global Collections of High-Throughput Public Data," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Tao Li & Liya Xu & Daniel J. Weisenberger & Meng Li & Wanding Zhou & Chen-Ching Peng & Kevin Stachelek & David Cobrinik & Gangning Liang & Jesse L. Berry, 2022. "Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Thomas J Crisman & Ivette Zelaya & Dan R Laks & Yining Zhao & Riki Kawaguchi & Fuying Gao & Harley I Kornblum & Giovanni Coppola, 2016. "Identification of an Efficient Gene Expression Panel for Glioblastoma Classification," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0089318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.