Author
Listed:
- Katherine Sledge Moore
- Daniel H Weissman
Abstract
Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., “search for green letters” and “search for orange letters”). In this type of capture, a potential target that matches one attentional set (e.g. a green stimulus) impairs the ability to identify a temporally proximal target that matches another attentional set (e.g. an orange stimulus). In the present study, we investigated whether set-specific capture stems from a bottleneck in working memory or from a depletion of limited resources that are distributed across multiple attentional sets. In each trial, participants searched a rapid serial visual presentation (RSVP) stream for up to three target letters (T1–T3) that could appear in any of three target colors (orange, green, or lavender). The most revealing findings came from trials in which T1 and T2 matched different attentional sets and were both identified. In these trials, T3 accuracy was lower when it did not match T1’s set than when it did match, but only when participants failed to identify T2. These findings support a bottleneck model of set-specific capture in which a limited-capacity mechanism in working memory enhances only one attentional set at a time, rather than a resource model in which processing capacity is simultaneously distributed across multiple attentional sets.
Suggested Citation
Katherine Sledge Moore & Daniel H Weissman, 2014.
"A Bottleneck Model of Set-Specific Capture,"
PLOS ONE, Public Library of Science, vol. 9(2), pages 1-9, February.
Handle:
RePEc:plo:pone00:0088313
DOI: 10.1371/journal.pone.0088313
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0088313. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.