Author
Listed:
- Md Tamjidul Hoque
- Louisa C E Windus
- Carrie J Lovitt
- Vicky M Avery
Abstract
Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated.
Suggested Citation
Md Tamjidul Hoque & Louisa C E Windus & Carrie J Lovitt & Vicky M Avery, 2013.
"PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture,"
PLOS ONE, Public Library of Science, vol. 8(11), pages 1-13, November.
Handle:
RePEc:plo:pone00:0079865
DOI: 10.1371/journal.pone.0079865
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0079865. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.