IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0077493.html
   My bibliography  Save this article

CCR2 Regulates the Uptake of Bone Marrow-Derived Fibroblasts in Renal Fibrosis

Author

Listed:
  • Yunfeng Xia
  • Mark L Entman
  • Yanlin Wang

Abstract

Recent studies have shown that bone marrow-derived fibroblasts contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment of bone marrow-derived fibroblasts into the kidney are incompletely understood. Bone marrow-derived fibroblasts express the chemokine receptor - CCR2. In this study, we tested the hypothesis that CCR2 participates in the recruitment of fibroblasts into the kidney during the development of renal fibrosis. Bone marrow-derived collagen-expressing GFP+ fibroblasts were detected in the obstructed kidneys of chimeric mice transplanted with donor bone marrow from collagen α1(I)-GFP reporter mice. These bone marrow-derived fibroblasts expressed PDGFR-β and CCR2. CCR2 knockout mice accumulated significantly fewer bone marrow-derived fibroblast precursors expressing the hematopoietic marker-CD45 and the mesenchymal markers-PDGFR-β or procollagen I in the obstructed kidneys compared with wild-type mice. Furthermore, CCR2 knockout mice displayed fewer bone marrow-derived myofibroblasts and expressed less α-SMA or FSP-1 in the obstructed kidneys compared with wild-type mice. Consistent with these findings, genetic deletion of CCR2 inhibited total collagen deposition and suppressed expression of collagen I and fibronectin. Moreover, genetic deletion of CCR2 inhibits MCP-1 and CXCL16 gene expression associated with a reduction of inflammatory cytokine expression and macrophage infiltration, suggesting a linear interaction between two chemokines/ligand receptors in tubular epithelial cells. Taken together, our results demonstrate that CCR2 signaling plays an important role in the pathogenesis of renal fibrosis through regulation of bone marrow-derived fibroblasts. These data suggest that inhibition of CCR2 signaling could constitute a novel therapeutic approach for fibrotic kidney disease.

Suggested Citation

  • Yunfeng Xia & Mark L Entman & Yanlin Wang, 2013. "CCR2 Regulates the Uptake of Bone Marrow-Derived Fibroblasts in Renal Fibrosis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
  • Handle: RePEc:plo:pone00:0077493
    DOI: 10.1371/journal.pone.0077493
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077493
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0077493&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0077493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0077493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.