IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0077103.html
   My bibliography  Save this article

Validity of Sealant Retention as Surrogate for Caries Prevention – A Systematic Review

Author

Listed:
  • Steffen Mickenautsch
  • Veerasamy Yengopal

Abstract

Introduction/Aim: To appraise the clinical literature in determining whether loss of complete sealant retention as surrogate endpoint is directly associated with caries occurrence on sealed teeth as its clinical endpoint and to apply the appraised evidence in testing the null-hypothesis that the retention/caries ratio between different types of sealant materials (resin and glass-ionomer cement) is not statistically significant ( = Prentice criterion for surrogate endpoint validity). Methods: Databases searched PubMed/Medline, Directory of Open Access Journals; IndMed, Scielo. Systematic reviews were checked for suitable trials. The search terms: “fiss* AND seal*” and “fissure AND sealant” were used. Article selection criteria were: clinical trial reporting on the retention and caries occurrence of resin and/or glass-ionomer cement (GIC) fissure sealed permanent molar teeth; minimum 24-month follow-up period; systematic review or meta-analysis. Datasets and information were extracted from accepted trials. The principle outcome measure was the ratio of Risk of loss of complete retention to the Risk of caries occurrence per sealant type (RCR). Risk of bias was assessed in trials and sensitivity analysis with regard to potential confounding factors conducted. The null-hypothesis was tested by graphical and statistical methods. Results: The risk of loss of complete retention of sealant materials was associated with the risk of caries occurrence for resin but not for GIC based sealants. The difference between RCR values of the two sealant types was statistically significant (p

Suggested Citation

  • Steffen Mickenautsch & Veerasamy Yengopal, 2013. "Validity of Sealant Retention as Surrogate for Caries Prevention – A Systematic Review," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
  • Handle: RePEc:plo:pone00:0077103
    DOI: 10.1371/journal.pone.0077103
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077103
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0077103&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0077103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yue Wang & Jeremy M. G. Taylor, 2002. "A Measure of the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 58(4), pages 803-812, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    2. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    3. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    4. Debashis Ghosh, 2008. "Semiparametric Inference for Surrogate Endpoints with Bivariate Censored Data," Biometrics, The International Biometric Society, vol. 64(1), pages 149-156, March.
    5. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    6. Manabu Kuroki, 2016. "The Identification of Direct and Indirect Effects in Studies with an Unmeasured Intermediate Variable," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 228-245, March.
    7. Zhihong Cai & Manabu Kuroki & Judea Pearl & Jin Tian, 2008. "Bounds on Direct Effects in the Presence of Confounded Intermediate Variables," Biometrics, The International Biometric Society, vol. 64(3), pages 695-701, September.
    8. Jeremy M. G. Taylor & Yue Wang & Rodolphe Thiébaut, 2005. "Counterfactual Links to the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 61(4), pages 1102-1111, December.
    9. Layla Parast & Tianxi Cai & Lu Tian, 2021. "Evaluating multiple surrogate markers with censored data," Biometrics, The International Biometric Society, vol. 77(4), pages 1315-1327, December.
    10. Banerjee, Buddhananda & Biswas, Atanu, 2015. "Linear increment in efficiency with the inclusion of surrogate endpoint," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 102-108.
    11. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling," Biometrics, The International Biometric Society, vol. 68(1), pages 226-232, March.
    12. Denis Agniel & Layla Parast, 2021. "Evaluation of longitudinal surrogate markers," Biometrics, The International Biometric Society, vol. 77(2), pages 477-489, June.
    13. John O'Quigley & Philippe Flandre, 2012. "Discussion by O'Quigley and Flandre," Biometrics, The International Biometric Society, vol. 68(1), pages 242-244, March.
    14. Yun Li & Jeremy M. G. Taylor & Roderick J. A. Little, 2011. "A Shrinkage Approach for Estimating a Treatment Effect Using Intermediate Biomarker Data in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(4), pages 1434-1441, December.
    15. Rui Zhuang & Fan Xia & Yixin Wang & Ying-Qing Chen, 2022. "A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    16. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    17. Layla Parast & Tanya P. Garcia & Ross L. Prentice & Raymond J. Carroll, 2022. "Robust methods to correct for measurement error when evaluating a surrogate marker," Biometrics, The International Biometric Society, vol. 78(1), pages 9-23, March.
    18. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    19. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.
    20. Xuan Wang & Layla Parast & Larry Han & Lu Tian & Tianxi Cai, 2023. "Robust approach to combining multiple markers to improve surrogacy," Biometrics, The International Biometric Society, vol. 79(2), pages 788-798, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0077103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.