Author
Abstract
Antibody development is still associated with substantial risks and difficulties as single mutations can radically change molecule properties like thermodynamic stability, solubility or viscosity. Since antibody generation methodologies cannot select and optimize for molecule properties which are important for biotechnological applications, careful sequence analysis and optimization is necessary to develop antibodies that fulfil the ambitious requirements of future drugs. While efforts to grab the physical principles of undesired molecule properties from the very bottom are becoming increasingly powerful, the wealth of publically available antibody sequences provides an alternative way to develop early assessment strategies for antibodies using a statistical approach which is the objective of this paper. Here, publically available sequences were used to develop heuristic potentials for the framework regions of heavy and light chains of antibodies of human and murine origin. The potentials take into account position dependent probabilities of individual amino acids but also conditional probabilities which are inevitable for sequence assessment and optimization. It is shown that the potentials derived from human sequences clearly distinguish between human sequences and sequences from mice and, hence, can be used as a measure of humaness which compares a given sequence with the phenotypic pool of human sequences instead of comparing sequence identities to germline genes. Following this line, it is demonstrated that, using the developed potentials, humanization of an antibody can be described as a simple mathematical optimization problem and that the in-silico generated framework variants closely resemble native sequences in terms of predicted immunogenicity.
Suggested Citation
Daniel Seeliger, 2013.
"Development of Scoring Functions for Antibody Sequence Assessment and Optimization,"
PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
Handle:
RePEc:plo:pone00:0076909
DOI: 10.1371/journal.pone.0076909
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0076909. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.