IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0076211.html
   My bibliography  Save this article

Sulfamethoxazole Induces a Switch Mechanism in T Cell Receptors Containing TCRVβ20-1, Altering pHLA Recognition

Author

Listed:
  • Stephan Watkins
  • Werner J Pichler

Abstract

T cell receptors (TCR) containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX). The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch affecting overall TCR binding affinity.

Suggested Citation

  • Stephan Watkins & Werner J Pichler, 2013. "Sulfamethoxazole Induces a Switch Mechanism in T Cell Receptors Containing TCRVβ20-1, Altering pHLA Recognition," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
  • Handle: RePEc:plo:pone00:0076211
    DOI: 10.1371/journal.pone.0076211
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076211
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0076211&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0076211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jochen S Hub & Bert L de Groot, 2009. "Detection of Functional Modes in Protein Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iskandar Mavlyanov & Abdurashid Ashirmetov & Zafar Mavlyanov & Bekhzod Abdullaev, 2016. "A Modern View of the Pathogenesis of Allergy with Drug Etiology," Journal of Life Sciences Research, Asian Online Journal Publishing Group, vol. 3(4), pages 50-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reliza J. McGinnis & Chad A. Brambley & Brandon Stamey & William C. Green & Kimberly N. Gragg & Erin R. Cafferty & Thomas C. Terwilliger & Michal Hammel & Thomas J. Hollis & Justin M. Miller & Maria D, 2022. "A monomeric mycobacteriophage immunity repressor utilizes two domains to recognize an asymmetric DNA sequence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0076211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.