Author
Listed:
- Diane Jansen
- Valerio Zerbi
- Ilse A C Arnoldussen
- Maximilian Wiesmann
- Anne Rijpma
- Xiaotian T Fang
- Pieter J Dederen
- Martina P C Mutsaers
- Laus M Broersen
- Dieter Lütjohann
- Malgorzata Miller
- Leo A B Joosten
- Arend Heerschap
- Amanda J Kiliaan
Abstract
Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological disorders.
Suggested Citation
Diane Jansen & Valerio Zerbi & Ilse A C Arnoldussen & Maximilian Wiesmann & Anne Rijpma & Xiaotian T Fang & Pieter J Dederen & Martina P C Mutsaers & Laus M Broersen & Dieter Lütjohann & Malgorzata Mi, 2013.
"Effects of Specific Multi-Nutrient Enriched Diets on Cerebral Metabolism, Cognition and Neuropathology in AβPPswe-PS1dE9 Mice,"
PLOS ONE, Public Library of Science, vol. 8(9), pages 1-20, September.
Handle:
RePEc:plo:pone00:0075393
DOI: 10.1371/journal.pone.0075393
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0075393. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.