Author
Listed:
- Johannes Eichner
- Nadine Kossler
- Clemens Wrzodek
- Arno Kalkuhl
- Dorthe Bach Toft
- Nina Ostenfeldt
- Virgile Richard
- Andreas Zell
Abstract
The current strategy for identifying the carcinogenicity of drugs involves the 2-year bioassay in male and female rats and mice. As this assay is cost-intensive and time-consuming there is a high interest in developing approaches for the screening and prioritization of drug candidates in preclinical safety evaluations. Predictive models based on toxicogenomics investigations after short-term exposure have shown their potential for assessing the carcinogenic risk. In this study, we investigated a novel method for the evaluation of toxicogenomics data based on ensemble feature selection in conjunction with bootstrapping for the purpose to derive reproducible and characteristic multi-gene signatures. This method was evaluated on a microarray dataset containing global gene expression data from liver samples of both male and female mice. The dataset was generated by the IMI MARCAR consortium and included gene expression profiles of genotoxic and nongenotoxic hepatocarcinogens obtained after treatment of CD-1 mice for 3 or 14 days. We developed predictive models based on gene expression data of both sexes and the models were employed for predicting the carcinogenic class of diverse compounds. Comparing the predictivity of our multi-gene signatures against signatures from literature, we demonstrated that by incorporating our gene sets as features slightly higher accuracy is on average achieved by a representative set of state-of-the art supervised learning methods. The constructed models were also used for the classification of Cyproterone acetate (CPA), Wy-14643 (WY) and Thioacetamid (TAA), whose primary mechanism of carcinogenicity is controversially discussed. Based on the extracted mouse liver gene expression patterns, CPA would be predicted as a nongenotoxic compound. In contrast, both WY and TAA would be classified as genotoxic mouse hepatocarcinogens.
Suggested Citation
Johannes Eichner & Nadine Kossler & Clemens Wrzodek & Arno Kalkuhl & Dorthe Bach Toft & Nina Ostenfeldt & Virgile Richard & Andreas Zell, 2013.
"A Toxicogenomic Approach for the Prediction of Murine Hepatocarcinogenesis Using Ensemble Feature Selection,"
PLOS ONE, Public Library of Science, vol. 8(9), pages 1-13, September.
Handle:
RePEc:plo:pone00:0073938
DOI: 10.1371/journal.pone.0073938
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0073938. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.