IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0070498.html
   My bibliography  Save this article

Voting-Based Cancer Module Identification by Combining Topological and Data-Driven Properties

Author

Listed:
  • A K M Azad
  • Hyunju Lee

Abstract

Recently, computational approaches integrating copy number aberrations (CNAs) and gene expression (GE) have been extensively studied to identify cancer-related genes and pathways. In this work, we integrate these two data sets with protein-protein interaction (PPI) information to find cancer-related functional modules. To integrate CNA and GE data, we first built a gene-gene relationship network from a set of seed genes by enumerating all types of pairwise correlations, e.g. GE-GE, CNA-GE, and CNA-CNA, over multiple patients. Next, we propose a voting-based cancer module identification algorithm by combining topological and data-driven properties (VToD algorithm) by using the gene-gene relationship network as a source of data-driven information, and the PPI data as topological information. We applied the VToD algorithm to 266 glioblastoma multiforme (GBM) and 96 ovarian carcinoma (OVC) samples that have both expression and copy number measurements, and identified 22 GBM modules and 23 OVC modules. Among 22 GBM modules, 15, 12, and 20 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Among 23 OVC modules, 19, 18, and 23 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Similarly, we also observed that 9 and 2 GBM modules and 15 and 18 OVC modules were enriched with cancer gene census (CGC) and specific cancer driver genes, respectively. Our proposed module-detection algorithm significantly outperformed other existing methods in terms of both functional and cancer gene set enrichments. Most of the cancer-related pathways from both cancer data sets found in our algorithm contained more than two types of gene-gene relationships, showing strong positive correlations between the number of different types of relationship and CGC enrichment -values (0.64 for GBM and 0.49 for OVC). This study suggests that identified modules containing both expression changes and CNAs can explain cancer-related activities with greater insights.

Suggested Citation

  • A K M Azad & Hyunju Lee, 2013. "Voting-Based Cancer Module Identification by Combining Topological and Data-Driven Properties," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0070498
    DOI: 10.1371/journal.pone.0070498
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070498
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0070498&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0070498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0070498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.