IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0066031.html
   My bibliography  Save this article

An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data

Author

Listed:
  • Natalie Berestovsky
  • Luay Nakhleh

Abstract

Regulatory networks play a central role in cellular behavior and decision making. Learning these regulatory networks is a major task in biology, and devising computational methods and mathematical models for this task is a major endeavor in bioinformatics. Boolean networks have been used extensively for modeling regulatory networks. In this model, the state of each gene can be either ‘on’ or ‘off’ and that next-state of a gene is updated, synchronously or asynchronously, according to a Boolean rule that is applied to the current-state of the entire system. Inferring a Boolean network from a set of experimental data entails two main steps: first, the experimental time-series data are discretized into Boolean trajectories, and then, a Boolean network is learned from these Boolean trajectories. In this paper, we consider three methods for data discretization, including a new one we propose, and three methods for learning Boolean networks, and study the performance of all possible nine combinations on four regulatory systems of varying dynamics complexities. We find that employing the right combination of methods for data discretization and network learning results in Boolean networks that capture the dynamics well and provide predictive power. Our findings are in contrast to a recent survey that placed Boolean networks on the low end of the “faithfulness to biological reality” and “ability to model dynamics” spectra. Further, contrary to the common argument in favor of Boolean networks, we find that a relatively large number of time points in the time-series data is required to learn good Boolean networks for certain data sets. Last but not least, while methods have been proposed for inferring Boolean networks, as discussed above, missing still are publicly available implementations thereof. Here, we make our implementation of the methods available publicly in open source at http://bioinfo.cs.rice.edu/.

Suggested Citation

  • Natalie Berestovsky & Luay Nakhleh, 2013. "An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
  • Handle: RePEc:plo:pone00:0066031
    DOI: 10.1371/journal.pone.0066031
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066031
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0066031&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0066031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0066031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.