IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0064389.html
   My bibliography  Save this article

Regulated Expression of Lentivirus-Mediated GDNF in Human Bone Marrow-Derived Mesenchymal Stem Cells and Its Neuroprotection on Dopaminergic Cells In Vitro

Author

Listed:
  • Wei-Hua Yang
  • Chun Yang
  • Yue-Qiang Xue
  • Tao Lu
  • Jakob Reiser
  • Li-Ru Zhao
  • Wei-Ming Duan

Abstract

Gene regulation remains one of the major challenges for gene therapy in clinical trials. In the present study, we first generated a binary tetracycline-on (Tet-On) system based on two lentivirus vectors, one expressing both human glial cell line-derived neurotrophic factor (hGDNF) and humanized recombinant green fluorescent protein (hrGFP) genes under second-generation tetracycline response element (TRE), and the other expressing the advanced reverse tetracycline-controlled transactivator - rtTA2S-M2 under a human minimal cytomegalovirus immediate early (CMV-IE) promoter. This system allows simultaneous expression of hGDNF and hrGFP genes in the presence of doxycycline (Dox). Human bone marrow-derived mesenchymal stem cells (hMSCs) were transduced with the binary Tet-On lentivirus vectors and characterized in vitro in the presence (On) or absence (Off) of Dox. The expression of hGDNF and hrGFP transgenes in transduced hMSCs was tightly regulated as determined by flow cytometry (FCM), GDNF enzyme-linked immunosorbent assay (ELISA) and quantitative real time-polymerase chain reaction (qRT-PCR). There was a dose-dependent regulation for hrGFP transgene expression. The levels of hGDNF protein in culture medium were correlated with the mean fluorescence intensity (MFI) units of hrGFP. The levels of transgene background expression were very low in the absence of Dox. The treatment of the conditioned medium from cultures of transduced hMSCs in the presence of Dox protected SH-SY5Y cells against 6-hydroxydopamine (6-OHDA) toxicity as determined by cell viability using 3, [4,5-dimethylthiazol-2-yl]- diphenyltetrazolium bromide (MTT) assay. The treatment of the conditioned medium was also found to improve the survival of dopaminergic (DA) neurons of ventral mesencephalic (VM) tissue in serum-free culture conditions as assessed by cell body area, the number of neurites and dendrite branching points, and proportion of tyrosine hydroxylase (TH)-immunoreactive (IR) cells. Our inducible lentivirus-mediated hGDNF gene delivery system may provide useful tools for basic research on gene therapy for chronic neurological disorders such as Parkinson’s disease (PD).

Suggested Citation

  • Wei-Hua Yang & Chun Yang & Yue-Qiang Xue & Tao Lu & Jakob Reiser & Li-Ru Zhao & Wei-Ming Duan, 2013. "Regulated Expression of Lentivirus-Mediated GDNF in Human Bone Marrow-Derived Mesenchymal Stem Cells and Its Neuroprotection on Dopaminergic Cells In Vitro," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
  • Handle: RePEc:plo:pone00:0064389
    DOI: 10.1371/journal.pone.0064389
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064389
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0064389&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0064389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0064389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.