IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0041215.html
   My bibliography  Save this article

Measuring the Maturity of the Fast-Spiking Interneuron Transcriptional Program in Autism, Schizophrenia, and Bipolar Disorder

Author

Listed:
  • Michael J Gandal
  • Addie May Nesbitt
  • Richard M McCurdy
  • Mark D Alter

Abstract

Background: Emerging evidence suggests that fast-spiking (FS) interneurons are disrupted in multiple neuropsychiatric disorders including autism, schizophrenia, and bipolar disorder. FS cells, which are the primary source of synaptic inhibition, are critical for temporally organizing brain activity, regulating brain maturation, and modulating critical developmental periods in multiple cortical systems. Reduced expression of parvalbumin, a marker of mature FS cells, has been reported in individuals with schizophrenia and bipolar disorder and in mouse models of schizophrenia and autism. Although these results suggest that FS cells may be immature in neuropsychiatric disease, this possibility had not previously been formally assessed. Methods: This study used time-course global expression data from developing FS cells to create a maturation index that tracked with the developmental age of purified cortical FS cells. The FS cell maturation index was then applied to global gene expression data from human cortex to estimate the maturity of the FS cell developmental program in the context of various disease states. Specificity of the index for FS cells was supported by a highly significant correlation of maturation index measurements with parvalbumin expression levels that withstood correction for multiple covariates. Conclusions: Results suggest the FS cell developmental gene expression program is immature in autism, schizophrenia, and bipolar disorder. More broadly, the current study indicates that cell-type specific maturation indices can be used to measure the maturity of developmental programs even in data from mixed cell types such as those found in brain homogenates.

Suggested Citation

  • Michael J Gandal & Addie May Nesbitt & Richard M McCurdy & Mark D Alter, 2012. "Measuring the Maturity of the Fast-Spiking Interneuron Transcriptional Program in Autism, Schizophrenia, and Bipolar Disorder," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-8, August.
  • Handle: RePEc:plo:pone00:0041215
    DOI: 10.1371/journal.pone.0041215
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041215
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0041215&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0041215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vikaas S. Sohal & Feng Zhang & Ofer Yizhar & Karl Deisseroth, 2009. "Parvalbumin neurons and gamma rhythms enhance cortical circuit performance," Nature, Nature, vol. 459(7247), pages 698-702, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark D Alter, 2013. "Studying Gene Expression System Regulation at the Program Level," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
    2. Benjamin A Samuels & E David Leonardo & Alex Dranovsky & Amanda Williams & Erik Wong & Addie May I Nesbitt & Richard D McCurdy & Rene Hen & Mark Alter, 2014. "Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    2. W Gordon Frankle & Raymond Y Cho & N Scott Mason & Chi-Min Chen & Michael Himes & Christopher Walker & David A Lewis & Chester A Mathis & Rajesh Narendran, 2012. "[11C]flumazenil Binding Is Increased in a Dose-Dependent Manner with Tiagabine-Induced Elevations in GABA Levels," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    3. Yu-Jun Wang & Gui-Ying Zan & Cenglin Xu & Xue-Ping Li & Xuelian Shu & Song-Yu Yao & Xiao-Shan Xu & Xiaoyun Qiu & Yexiang Chen & Kai Jin & Qi-Xin Zhou & Jia-Yu Ye & Yi Wang & Lin Xu & Zhong Chen & Jing, 2023. "The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Tommaso Ianni & Sedona N. Ewbank & Marjorie R. Levinstein & Matine M. Azadian & Reece C. Budinich & Michael Michaelides & Raag D. Airan, 2024. "Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Hidenori Tabata & Megumi Sasaki & Masakazu Agetsuma & Hitomi Sano & Yuki Hirota & Michio Miyajima & Kanehiro Hayashi & Takao Honda & Masashi Nishikawa & Yutaka Inaguma & Hidenori Ito & Hirohide Takeba, 2022. "Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Emma Leishman & Brian F O’Donnell & James B Millward & Jenifer L Vohs & Olga Rass & Giri P Krishnan & Amanda R Bolbecker & Sandra L Morzorati, 2015. "Phencyclidine Disrupts the Auditory Steady State Response in Rats," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
    7. Daigo Takeuchi & Dheeraj Roy & Shruti Muralidhar & Takashi Kawai & Andrea Bari & Chanel Lovett & Heather A. Sullivan & Ian R. Wickersham & Susumu Tonegawa, 2022. "Cingulate-motor circuits update rule representations for sequential choice decisions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Stefano Berto & Alex H. Treacher & Emre Caglayan & Danni Luo & Jillian R. Haney & Michael J. Gandal & Daniel H. Geschwind & Albert A. Montillo & Genevieve Konopka, 2022. "Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Tal Sharf & Tjitse Molen & Stella M. K. Glasauer & Elmer Guzman & Alessio P. Buccino & Gabriel Luna & Zhuowei Cheng & Morgane Audouard & Kamalini G. Ranasinghe & Kiwamu Kudo & Srikantan S. Nagarajan &, 2022. "Functional neuronal circuitry and oscillatory dynamics in human brain organoids," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Xin Fu & Eric Teboul & Grant L. Weiss & Pantelis Antonoudiou & Chandrashekhar D. Borkar & Jonathan P. Fadok & Jamie Maguire & Jeffrey G. Tasker, 2022. "Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Shaojian Lin & Anke Zhang & Ling Yuan & Yufan Wang & Chuan Zhang & Junkun Jiang & Houshi Xu & Huiwen Yuan & Hui Yao & Qianying Zhang & Yong Zhang & Meiqing Lou & Ping Wang & Zhen-Ning Zhang & Bing Lua, 2022. "Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0041215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.