IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0031537.html
   My bibliography  Save this article

Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex

Author

Listed:
  • Craig A Atencio
  • Christoph E Schreiner

Abstract

Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.

Suggested Citation

  • Craig A Atencio & Christoph E Schreiner, 2012. "Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
  • Handle: RePEc:plo:pone00:0031537
    DOI: 10.1371/journal.pone.0031537
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031537
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0031537&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0031537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Craig A Atencio & Christoph E Schreiner, 2010. "Columnar Connectivity and Laminar Processing in Cat Primary Auditory Cortex," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivar L Thorson & Jean LiƩnard & Stephen V David, 2015. "The Essential Complexity of Auditory Receptive Fields," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-33, December.
    2. Roohollah Massoudi & Marc M Van Wanrooij & Huib Versnel & A John Van Opstal, 2015. "Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seif Eldawlatly & Karim G Oweiss, 2011. "Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0031537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.