IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0022933.html
   My bibliography  Save this article

Simulating EGFR-ERK Signaling Control by Scaffold Proteins KSR and MP1 Reveals Differential Ligand-Sensitivity Co-Regulated by Cbl-CIN85 and Endophilin

Author

Listed:
  • Lu Huang
  • Catherine Qiurong Pan
  • Baowen Li
  • Lisa Tucker-Kellogg
  • Bruce Tidor
  • Yuzong Chen
  • Boon Chuan Low

Abstract

ERK activation is enhanced by the scaffolding proteins KSR and MP1, localized near the cell membrane and late endosomes respectively, but little is known about their dynamic interplay. We develop here a mathematical model with ordinary differential equations to describe the dynamic activation of EGFR-ERK signaling under a conventional pathway without scaffolds, a KSR-scaffolded pathway, and an MP1-scaffolded pathway, and their impacts were examined under the influence of the endosomal regulators, Cbl-CIN85 and Endophilin A1. This new integrated model, validated against experimental results and computational constraints, shows that changes of ERK activation and EGFR endocytosis in response to EGF concentrations (i.e ligand sensitivity) depend on these scaffold proteins and regulators. The KSR-scaffolded and the conventional pathways act synergistically and are sensitive to EGF stimulation. When the KSR level is high, the sensitivity of ERK activation from this combined pathway remains low when Cbl-CIN85 level is low. But, such sensitivity can be increased with increasing levels of Endophilin if Cbl-CIN85 level becomes high. However, reduced KSR levels already present high sensitivity independent of Endophilin levels. In contrast, ERK activation by MP1 is additive to that of KSR but it shows little ligand-sensitivity under high levels of EGF. This can be partly reversed by increasing level of Endophilin while keeping Cbl-CIN85 level low. Further analyses showed that high levels of KSR affect ligand-sensitivity of EGFR endocytosis whereas MP1 ensures the robustness of endosomal ERK activation. These simulations constitute a multi-dimensional exploration of how EGF-dependent EGFR endocytosis and ERK activation are dynamically affected by scaffolds KSR and MP1, co-regulated by Cbl-CIN85 and Endophilin A1. Together, these results provide a detailed and quantitative demonstration of how regulators and scaffolds can collaborate to fine-tune the ligand-dependent sensitivity of EGFR endocytosis and ERK activation which could underlie differences during normal physiology, disease states and drug responses.

Suggested Citation

  • Lu Huang & Catherine Qiurong Pan & Baowen Li & Lisa Tucker-Kellogg & Bruce Tidor & Yuzong Chen & Boon Chuan Low, 2011. "Simulating EGFR-ERK Signaling Control by Scaffold Proteins KSR and MP1 Reveals Differential Ligand-Sensitivity Co-Regulated by Cbl-CIN85 and Endophilin," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0022933
    DOI: 10.1371/journal.pone.0022933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0022933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0022933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.