Author
Listed:
- Heike Junker
- Simone Venz
- Uwe Zimmermann
- Andrea Thiele
- Christian Scharf
- Reinhard Walther
Abstract
Renal cell carcinoma accounts for about 3% of adult malignancies and 85% of neoplasms arising from the kidney. To identify potential progression markers for kidney cancer we examined non-neoplastic and neoplastic kidney tissue from three groups of patients, which represent different tumor stages (pT1, pT2, pT3) by a fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) approach combined with MALDI-ToF-MS/MS. Delta2D software package was used for gel image based quantification and statistical analysis. Thereby, a comprehensive Principal Component Analysis (PCA) could be performed and allowed a robust quality control of the experiment as well as a classification of the analyzed samples, which correlated with the predicted stages from the pathological examination. Additionally for selected candidate proteins we detected a correlation to the tumor grading as revealed by immunohistochemistry. On the 2D protein map 176 spots out of 989 were detected as at least 2-fold differentially expressed. These spots were analyzed by MALDI-ToF-MS/MS and 187 different proteins were identified. The functional clustering of the identified proteins revealed ten groups. Within these groups we found 86 enzymes, 63 proteins of unknown function, 14 transporter, 8 peptidases and 7 kinases. From the systems biology approach we could map many of these proteins in major pathways involved in remodelling of cytoskeleton, mitochondrial dysfunctions and changes in lipid metabolism. Due to complexity of the highly interconnected pathway network, further expression and functional validation of these proteins might provide new insights in kidney cancer progression to design novel diagnostic and therapeutic strategies.
Suggested Citation
Heike Junker & Simone Venz & Uwe Zimmermann & Andrea Thiele & Christian Scharf & Reinhard Walther, 2011.
"Stage-Related Alterations in Renal Cell Carcinoma – Comprehensive Quantitative Analysis by 2D-DIGE and Protein Network Analysis,"
PLOS ONE, Public Library of Science, vol. 6(7), pages 1-13, July.
Handle:
RePEc:plo:pone00:0021867
DOI: 10.1371/journal.pone.0021867
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0021867. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.