Author
Listed:
- Sukant Khurana
- Wen-Ke Li
- Nigel S Atkinson
Abstract
Drosophila melanogaster larvae are model systems for studies of development, synaptic transmission, sensory physiology, locomotion, drug discovery, and learning and memory. A detailed behavioral understanding of larvae can advance all these fields of neuroscience. Automated tracking can expand fine-grained behavioral analysis, yet its full potential remains to be implemented for the larvae. All published methods are unable to track the larvae near high contrast objects, including the petri-dish edges encountered in many behavioral paradigms. To alleviate these issues, we enhanced the larval contrast to obtain complete tracks. Our method employed a dual approach of optical-contrast boosting and post-hoc image processing for contrast enhancement. We reared larvae on black food media to enhance their optical contrast through darkening of their digestive tracts. For image processing we performed Frame Averaging followed by Subtraction then Thresholding (FAST). This algorithm can remove all static objects from the movie, including petri-dish edges prior to processing by the image-tracking module. This dual approach for contrast enhancement also succeeded in overcoming fluctuations in illumination caused by the alternating current power source. Our tracking method yields complete tracks, including at the edges of the behavioral arena and is computationally fast, hence suitable for high-throughput fine-grained behavioral measurements.
Suggested Citation
Sukant Khurana & Wen-Ke Li & Nigel S Atkinson, 2010.
"Image Enhancement for Tracking the Translucent Larvae of Drosophila melanogaster,"
PLOS ONE, Public Library of Science, vol. 5(12), pages 1-7, December.
Handle:
RePEc:plo:pone00:0015259
DOI: 10.1371/journal.pone.0015259
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0015259. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.