Author
Listed:
- Ville-Pekka Eronen
- Rolf O Lindén
- Anna Lindroos
- Mirella Kanerva
- Tero Aittokallio
Abstract
Recent technological developments in genetic screening approaches have offered the means to start exploring quantitative genotype-phenotype relationships on a large-scale. What remains unclear is the extent to which the quantitative genetic interaction datasets can distinguish the broad spectrum of interaction classes, as compared to existing information on mutation pairs associated with both positive and negative interactions, and whether the scoring of varying degrees of such epistatic effects could be improved by computational means. To address these questions, we introduce here a computational approach for improving the quantitative discrimination power encoded in the genetic interaction screening data. Our matrix approximation model decomposes the original double-mutant fitness matrix into separate components, representing variability across the array and query mutants, which can be utilized for estimating and correcting the single-mutant fitness effects, respectively. When applied to three large-scale quantitative interaction datasets in yeast, we could improve the accuracy of scoring various interaction classes beyond that obtained with the original fitness data, especially in synthetic genetic array (SGA) and in genetic interaction mapping (GIM) datasets. In addition to the known pairs of interactions used in the evaluation of the computational approach, a number of novel interaction pairs were also predicted, along with underlying biological mechanisms, which remained undetected by the original datasets. It was shown that the optimal choice of the scoring function depends heavily on the screening approach and on the interaction class under analysis. Moreover, a simple preprocessing of the fitness matrix could further enhance the discrimination power of the epistatic miniarray profiling (E-MAP) dataset. These systematic evaluation results provide in-depth information on the optimal analysis of the future, large-scale screening experiments. In general, the modeling framework, enabling accurate identification and classification of genetic interactions, provides a solid basis for completing and mining the genetic interaction networks in yeast and other organisms.
Suggested Citation
Ville-Pekka Eronen & Rolf O Lindén & Anna Lindroos & Mirella Kanerva & Tero Aittokallio, 2010.
"Genome-Wide Scoring of Positive and Negative Epistasis through Decomposition of Quantitative Genetic Interaction Fitness Matrices,"
PLOS ONE, Public Library of Science, vol. 5(7), pages 1-13, July.
Handle:
RePEc:plo:pone00:0011611
DOI: 10.1371/journal.pone.0011611
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011611. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.