Author
Listed:
- Dapeng Zhang
- Huiling Xiong
- Jan A Mennigen
- Jason T Popesku
- Vicki L Marlatt
- Christopher J Martyniuk
- Kate Crump
- Andrew R Cossins
- Xuhua Xia
- Vance L Trudeau
Abstract
Background: Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. Methodology/Principal Findings: In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABAA gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Conclusions/Significance: Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.
Suggested Citation
Dapeng Zhang & Huiling Xiong & Jan A Mennigen & Jason T Popesku & Vicki L Marlatt & Christopher J Martyniuk & Kate Crump & Andrew R Cossins & Xuhua Xia & Vance L Trudeau, 2009.
"Defining Global Neuroendocrine Gene Expression Patterns Associated with Reproductive Seasonality in Fish,"
PLOS ONE, Public Library of Science, vol. 4(6), pages 1-11, June.
Handle:
RePEc:plo:pone00:0005816
DOI: 10.1371/journal.pone.0005816
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0005816. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.