Author
Listed:
- Xing Yu Leung
- Rakibul M Islam
- Mohammadmehdi Adhami
- Dragan Ilic
- Lara McDonald
- Shanika Palawaththa
- Basia Diug
- Saif U Munshi
- Md Nazmul Karim
Abstract
Dengue is among the fastest-spreading vector-borne infectious disease, with outbreaks often overwhelm the health system and result in huge morbidity and mortality in its endemic populations in the absence of an efficient warning system. A large number of prediction models are currently in use globally. As such, this study aimed to systematically review the published literature that used quantitative models to predict dengue outbreaks and provide insights about the current practices. A systematic search was undertaken, using the Ovid MEDLINE, EMBASE, Scopus and Web of Science databases for published citations, without time or geographical restrictions. Study selection, data extraction and management process were devised in accordance with the ‘Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies’ (‘CHARMS’) framework. A total of 99 models were included in the review from 64 studies. Most models sourced climate (94.7%) and climate change (77.8%) data from agency reports and only 59.6% of the models adjusted for reporting time lag. All included models used climate predictors; 70.7% of them were built with only climate factors. Climate factors were used in combination with climate change factors (13.4%), both climate change and demographic factors (3.1%), vector factors (6.3%), and demographic factors (5.2%). Machine learning techniques were used for 39.4% of the models. Of these, random forest (15.4%), neural networks (23.1%) and ensemble models (10.3%) were notable. Among the statistical (60.6%) models, linear regression (18.3%), Poisson regression (18.3%), generalized additive models (16.7%) and time series/autoregressive models (26.7%) were notable. Around 20.2% of the models reported no validation at all and only 5.2% reported external validation. The reporting of methodology and model performance measures were inadequate in many of the existing prediction models. This review collates plausible predictors and methodological approaches, which will contribute to robust modelling in diverse settings and populations.Author summary: Dengue is considered as a major public health challenge and a life-threatening disease affecting people worldwide. Over the past decades, numerous forecast models have been developed to predict dengue incidence using various factors based on different geographical locations. Dengue transmission appears to be highly sensitive to climate variability and change, however quantitative models used to assess the relationship between climate change and dengue often differ due to their distribution assumptions, the nature of the relationship and the spatial and/or temporal dynamics of the response. We performed a systematic review to examine current literature surrounding existing quantitative models based on development methodology, predictor variable used and model performance. Our analysis demonstrates several shortcomings in current modelling practice, and advocates for the use of real time primary predictor data, the incorporation of non-climatic parameters as predictors and more comprehensive reporting of model development techniques and validation.
Suggested Citation
Xing Yu Leung & Rakibul M Islam & Mohammadmehdi Adhami & Dragan Ilic & Lara McDonald & Shanika Palawaththa & Basia Diug & Saif U Munshi & Md Nazmul Karim, 2023.
"A systematic review of dengue outbreak prediction models: Current scenario and future directions,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(2), pages 1-21, February.
Handle:
RePEc:plo:pntd00:0010631
DOI: 10.1371/journal.pntd.0010631
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0010631. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.