IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/1002697.html
   My bibliography  Save this article

Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study

Author

Listed:
  • Andrew G Taylor
  • Clinton Mielke
  • John Mongan

Abstract

Background: Pneumothorax can precipitate a life-threatening emergency due to lung collapse and respiratory or circulatory distress. Pneumothorax is typically detected on chest X-ray; however, treatment is reliant on timely review of radiographs. Since current imaging volumes may result in long worklists of radiographs awaiting review, an automated method of prioritizing X-rays with pneumothorax may reduce time to treatment. Our objective was to create a large human-annotated dataset of chest X-rays containing pneumothorax and to train deep convolutional networks to screen for potentially emergent moderate or large pneumothorax at the time of image acquisition. Methods and findings: In all, 13,292 frontal chest X-rays (3,107 with pneumothorax) were visually annotated by radiologists. This dataset was used to train and evaluate multiple network architectures. Images showing large- or moderate-sized pneumothorax were considered positive, and those with trace or no pneumothorax were considered negative. Images showing small pneumothorax were excluded from training. Using an internal validation set (n = 1,993), we selected the 2 top-performing models; these models were then evaluated on a held-out internal test set based on area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV). The final internal test was performed initially on a subset with small pneumothorax excluded (as in training; n = 1,701), then on the full test set (n = 1,990), with small pneumothorax included as positive. External evaluation was performed using the National Institutes of Health (NIH) ChestX-ray14 set, a public dataset labeled for chest pathology based on text reports. All images labeled with pneumothorax were considered positive, because the NIH set does not classify pneumothorax by size. In internal testing, our “high sensitivity model” produced a sensitivity of 0.84 (95% CI 0.78–0.90), specificity of 0.90 (95% CI 0.89–0.92), and AUC of 0.94 for the test subset with small pneumothorax excluded. Our “high specificity model” showed sensitivity of 0.80 (95% CI 0.72–0.86), specificity of 0.97 (95% CI 0.96–0.98), and AUC of 0.96 for this set. PPVs were 0.45 (95% CI 0.39–0.51) and 0.71 (95% CI 0.63–0.77), respectively. Internal testing on the full set showed expected decreased performance (sensitivity 0.55, specificity 0.90, and AUC 0.82 for high sensitivity model and sensitivity 0.45, specificity 0.97, and AUC 0.86 for high specificity model). External testing using the NIH dataset showed some further performance decline (sensitivity 0.28–0.49, specificity 0.85–0.97, and AUC 0.75 for both). Due to labeling differences between internal and external datasets, these findings represent a preliminary step towards external validation. Conclusions: We trained automated classifiers to detect moderate and large pneumothorax in frontal chest X-rays at high levels of performance on held-out test data. These models may provide a high specificity screening solution to detect moderate or large pneumothorax on images collected when human review might be delayed, such as overnight. They are not intended for unsupervised diagnosis of all pneumothoraces, as many small pneumothoraces (and some larger ones) are not detected by the algorithm. Implementation studies are warranted to develop appropriate, effective clinician alerts for the potentially critical finding of pneumothorax, and to assess their impact on reducing time to treatment. Why was this study done?: What did the researchers do and find?: What do these findings mean?:

Suggested Citation

  • Andrew G Taylor & Clinton Mielke & John Mongan, 2018. "Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-15, November.
  • Handle: RePEc:plo:pmed00:1002697
    DOI: 10.1371/journal.pmed.1002697
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002697
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1002697&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.1002697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weijie Fan & Yi Yang & Jing Qi & Qichuan Zhang & Cuiwei Liao & Li Wen & Shuang Wang & Guangxian Wang & Yu Xia & Qihua Wu & Xiaotao Fan & Xingcai Chen & Mi He & JingJing Xiao & Liu Yang & Yun Liu & Jia, 2024. "A deep-learning-based framework for identifying and localizing multiple abnormalities and assessing cardiomegaly in chest X-ray," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1002697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.