IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/1001515.html
   My bibliography  Save this article

Current and Former Smoking and Risk for Venous Thromboembolism: A Systematic Review and Meta-Analysis

Author

Listed:
  • Yun-Jiu Cheng
  • Zhi-Hao Liu
  • Feng-Juan Yao
  • Wu-Tao Zeng
  • Dong-Dan Zheng
  • Yu-Gang Dong
  • Su-Hua Wu

Abstract

: In a meta-analysis of 32 observational studies involving 3,966,184 participants and 35,151 events, Suhua Wu and colleagues found that current, ever, and former smoking was associated with risk of venous thromboembolism. Background: Smoking is a well-established risk factor for atherosclerotic disease, but its role as an independent risk factor for venous thromboembolism (VTE) remains controversial. We conducted a meta-analysis to summarize all published prospective studies and case-control studies to update the risk for VTE in smokers and determine whether a dose–response relationship exists. Methods and Findings: We performed a literature search using MEDLINE (source PubMed, January 1, 1966 to June 15, 2013) and EMBASE (January 1, 1980 to June 15, 2013) with no restrictions. Pooled effect estimates were obtained by using random-effects meta-analysis. Thirty-two observational studies involving 3,966,184 participants and 35,151 VTE events were identified. Compared with never smokers, the overall combined relative risks (RRs) for developing VTE were 1.17 (95% CI 1.09–1.25) for ever smokers, 1.23 (95% CI 1.14–1.33) for current smokers, and 1.10 (95% CI 1.03–1.17) for former smokers, respectively. The risk increased by 10.2% (95% CI 8.6%–11.8%) for every additional ten cigarettes per day smoked or by 6.1% (95% CI 3.8%–8.5%) for every additional ten pack-years. Analysis of 13 studies adjusted for body mass index (BMI) yielded a relatively higher RR (1.30; 95% CI 1.24–1.37) for current smokers. The population attributable fractions of VTE were 8.7% (95% CI 4.8%–12.3%) for ever smoking, 5.8% (95% CI 3.6%–8.2%) for current smoking, and 2.7% (95% CI 0.8%–4.5%) for former smoking. Smoking was associated with an absolute risk increase of 24.3 (95% CI 15.4–26.7) cases per 100,000 person-years. Conclusions: Cigarette smoking is associated with a slightly increased risk for VTE. BMI appears to be a confounding factor in the risk estimates. The relationship between VTE and smoking has clinical relevance with respect to individual screening, risk factor modification, and the primary and secondary prevention of VTE. Background: Blood normally flows throughout the human body, supplying its organs and tissues with oxygen and nutrients. But, when an injury occurs, proteins called clotting factors make the blood gel (coagulate) at the injury site. The resultant clot (thrombus) plugs the wound and prevents blood loss. Occasionally, a thrombus forms inside an uninjured blood vessel and partly or completely blocks the blood flow. Clot formation inside one of the veins deep within the body, usually in a leg, is called deep vein thrombosis (DVT) and can cause pain, swelling, and redness in the affected limb. DVT can be treated with drugs that stop the blood clot from getting larger (anticoagulants) but, if left untreated, part of the clot can break off and travel to the lungs, where it can cause a life-threatening pulmonary embolism. DVT and pulmonary embolism are collectively known as venous thromboembolism (VTE). Risk factors for VTE include having an inherited blood clotting disorder, oral contraceptive use, prolonged inactivity (for example, during a long-haul plane flight), and having surgery. VTEs are present in about a third of all people who die in hospital and, in non-bedridden populations, about 10% of people die within 28 days of a first VTE event. Why Was This Study Done?: Some but not all studies have reported that smoking is also a risk factor for VTE. A clear demonstration of a significant association (a relationship unlikely to have occurred by chance) between smoking and VTE might help to reduce the burden of VTE because smoking can potentially be reduced by encouraging individuals to quit smoking and through taxation policies and other measures designed to reduce tobacco consumption. In this systematic review and meta-analysis, the researchers examine the link between smoking and the risk of VTE in the general population and investigate whether heavy smokers have a higher risk of VTE than light smokers. A systematic review uses predefined criteria to identify all the research on a given topic; meta-analysis is a statistical method for combining the results of several studies. What Did the Researchers Do and Find?: The researchers identified 32 observational studies (investigations that record a population's baseline characteristics and subsequent disease development) that provided data on smoking and VTE. Together, the studies involved nearly 4 million participants and recorded 35,151 VTE events. Compared with never smokers, ever smokers (current and former smokers combined) had a relative risk (RR) of developing VTE of 1.17. That is, ever smokers were 17% more likely to develop VTE than never smokers. For current smokers and former smokers, RRs were 1.23 and 1.10, respectively. Analysis of only studies that adjusted for body mass index (a measure of body fat and a known risk factor for conditions that affect the heart and circulation) yielded a slightly higher RR (1.30) for current smokers compared with never smokers. For ever smokers, the population attributable fraction (the proportional reduction in VTE that would accrue in the population if no one smoked) was 8.7%. Notably, the risk of VTE increased by 10.2% for every additional ten cigarettes smoked per day and by 6.1% for every additional ten pack-years. Thus, an individual who smoked one pack of cigarettes per day for 40 years had a 26.7% higher risk of developing VTE than someone who had never smoked. Finally, smoking was associated with an absolute risk increase of 24.3 cases of VTE per 100,000 person-years. What Do These Findings Mean?: These findings indicate that cigarette smoking is associated with a statistically significant, slightly increased risk for VTE among the general population and reveal a dose-relationship between smoking and VTE risk. They cannot prove that smoking causes VTE—people who smoke may share other unknown characteristics (confounding factors) that are actually responsible for their increased risk of VTE. Indeed, these findings identify body mass index as a potential confounding factor that might affect the accuracy of estimates of the association between smoking and VTE risk. Although the risk of VTE associated with smoking is smaller than the risk associated with some well-established VTE risk factors, smoking is more common (globally, there are 1.1 billion smokers) and may act synergistically with some of these risk factors. Thus, smoking behavior should be considered when screening individuals for VTE and in the prevention of first and subsequent VTE events. Additional Information: Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001515.

Suggested Citation

  • Yun-Jiu Cheng & Zhi-Hao Liu & Feng-Juan Yao & Wu-Tao Zeng & Dong-Dan Zheng & Yu-Gang Dong & Su-Hua Wu, 2013. "Current and Former Smoking and Risk for Venous Thromboembolism: A Systematic Review and Meta-Analysis," PLOS Medicine, Public Library of Science, vol. 10(9), pages 1-14, September.
  • Handle: RePEc:plo:pmed00:1001515
    DOI: 10.1371/journal.pmed.1001515
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001515
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1001515&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.1001515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karen Lizzette Ramírez-Cervantes & Consuelo Huerta-Álvarez & Manuel Quintana-Díaz, 2022. "Thromboembolic Events in a Socio-Economically Disadvantaged Population with COVID-19 Admitted to a Medicalized Hotel in Madrid," IJERPH, MDPI, vol. 19(13), pages 1-9, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1001515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.