IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/0050171.html
   My bibliography  Save this article

Two Faces of Chondroitin Sulfate Proteoglycan in Spinal Cord Repair: A Role in Microglia/Macrophage Activation

Author

Listed:
  • Asya Rolls
  • Ravid Shechter
  • Anat London
  • Yifat Segev
  • Jasmin Jacob-Hirsch
  • Ninette Amariglio
  • Gidon Rechavi
  • Michal Schwartz

Abstract

Background: Chondroitin sulfate proteoglycan (CSPG) is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS) recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study. Methods and Findings: We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1) production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-α) levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by these cells. Conclusions: Our results show that CSPG plays a pivotal role in the repair of injured spinal cord and in the recovery of motor function during the acute phase after the injury; CSPG spatially and temporally controls activity of infiltrating blood-borne monocytes and resident microglia. The distinction made in this study between the beneficial role of CSPG during the acute stage and its deleterious effect at later stages emphasizes the need to retain the endogenous potential of this molecule in repair by controlling its levels at different stages of post-injury repair. Michal Schwartz and colleagues describe the role of chondroitin sulfate proteoglycan in the repair of injured tissue and in the recovery of motor function during the acute phase after spinal cord injury. Background.: Every year, spinal cord injuries paralyze about 10,000 people in the United States. The spinal cord, which contains bundles of nervous system cells called neurons, is the communication superhighway between the brain and the body. Messages from the brain travel down the spinal cord to control movement, breathing, and other bodily functions; messages from the skin and other sensory organs travel up the spinal cord to keep the brain informed about the body. All these messages are transmitted along axons, long extensions on the neurons. The spinal cord is protected by the bones of the spine but if these are displaced or broken, the axons can be compressed or cut, which interrupts the information flow. Damage near the top of the spinal cord paralyzes the arms and legs (tetraplegia); damage lower down paralyzes the legs only (paraplegia). Spinal cord injuries also cause other medical problems, including the loss of bowel and bladder control. Currently there is no effective treatment for spinal cord injuries. Treatment with drugs to reduce inflammation has, at best, only modest effects. Moreover, because damaged axons rarely regrow, most spinal cord injuries are permanent. Why Was This Study Done?: One barrier to recovery after a spinal cord injury seems to be an inappropriate immune response to the injury. After an injury, microglia (immune system cells that live in the nervous system), and macrophages (blood-borne immune system cells that infiltrate the injury) become activated. Microglia/macrophage activation can be either beneficial (the cells make IGF-1, a protein that stimulates axon growth) or destructive (the cells make TNF-α, a protein that kills neurons), so studies of microglia/macrophage activation might suggest ways to treat spinal cord injuries. Another possible barrier to recovery is “chondroitin sulfate proteoglycan” (CSPG). This is a major component of the scar tissue (the “glial scar”) that forms around spinal cord injuries. CSPG limits axon regrowth, so attempts have been made to improve spinal cord repair by removing CSPG. But if CSPG prevents spinal cord repair, why is so much of it made immediately after an injury? In this study, the researchers investigate this paradox by asking whether CSPG made in the right place and in the right amount might have a beneficial role in spinal cord repair that has been overlooked. What Did the Researchers Do and Find?: The researchers bruised a small section of the spinal cord of mice to cause hind limb paralysis, and then monitored the recovery of movement in these animals. They also examined the injured tissue microscopically, looked for microglia and infiltrating macrophages at the injury site, and measured the production of IGF-1 and TNF-α by these cells. Inhibition of CSPG synthesis immediately after injury impaired the functional recovery of the mice and increased tissue loss at the injury site. It also altered the spatial organization of infiltrating macrophages at the injury site, reduced IGF-1 production by these microglia/macrophages, and increased TNF-α levels. In contrast, when CSPG synthesis was not inhibited until two days after the injury, the mice recovered well from spinal cord injury. Furthermore, the interaction of CSPG with a cell-surface protein called CD44 activated microglia/macrophages growing in dishes and increased their production of IGF-1 but not of molecules that kill neurons. What Do These Findings Mean?: These findings suggest that, immediately after a spinal cord injury, CSPG is needed for the repair of injured neurons and the recovery of movement, but that later on the presence of CSPG hinders repair. The findings also indicate that CSPG has these effects, at least in part, because it regulates the activity and localization of microglia and macrophages at the injury site and thus modulates local immune responses to the damage. Results obtained from experiments done in animals do not always accurately reflect the situation in people, so these findings need to be confirmed in patients with spinal cord injuries. However, they suggest that the effect of CSPG on spinal cord repair is not an inappropriate response to the injury, as is widely believed. Consequently, careful manipulation of CSPG levels might improve outcomes for people with spinal cord injuries. Additional Information.: Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050171.

Suggested Citation

  • Asya Rolls & Ravid Shechter & Anat London & Yifat Segev & Jasmin Jacob-Hirsch & Ninette Amariglio & Gidon Rechavi & Michal Schwartz, 2008. "Two Faces of Chondroitin Sulfate Proteoglycan in Spinal Cord Repair: A Role in Microglia/Macrophage Activation," PLOS Medicine, Public Library of Science, vol. 5(8), pages 1-16, August.
  • Handle: RePEc:plo:pmed00:0050171
    DOI: 10.1371/journal.pmed.0050171
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050171
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.0050171&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.0050171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:0050171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.