IDEAS home Printed from https://ideas.repec.org/a/plo/pgph00/0004465.html
   My bibliography  Save this article

Diagnostic yield of nine user-friendly bioinformatics tools for predicting Mycobacterium tuberculosis drug resistance: A systematic review and network meta-analysis

Author

Listed:
  • Ya-Li Chen
  • Yu He
  • Victor Naestholt Dahl
  • Kan Yu
  • Yan-An Zhang
  • Cui-Ping Guan
  • Mao-Shui Wang

Abstract

To compare the diagnostic yield of various bioinformatics tools for predicting Mycobacterium tuberculosis drug resistance. A systematic review of PubMed, Embase, Scopus, Web of Science, CINAHL and the Cochrane Library was performed to identify studies reporting the effectiveness of bioinformatic tools for predicting resistance to anti-tuberculosis (TB) drugs. Data were collected and pooled using random-effects meta-analysis and Bayesian network meta-analysis (NMA). Summary receiver operating characteristic curves (SROCs) analysis were performed, and superiority index (SI) and area under the curve (AUC) were calculated. Thirty-three studies evaluated 9 different bioinformatics tools for predicting resistance to 14 anti-TB drugs. NMA and SROCs demonstrated that TBProfiler, TGS-TB, Mykrobe, PhyResSE, and SAM-TB all exhibited satisfactory performance. Remarkably, TBProfiler stood out with its exceptional ability to predict resistance to the majority of anti-TB drugs, including isoniazid (SI: 3.39 [95% confidence interval (CI): 0.20, 11.00]; AUC: 0.97 [0.95, 0.98]), rifampicin (SI: 6.38 [0.60, 15.00]; AUC: 0.99 [0.98, 1.00]), ethambutol (SI: 5.15 [0.60, 13.00]; AUC: 0.96 [0.94, 0.97]), streptomycin (SI: 3.67 [0.60, 11.00]; AUC: 0.97 [0.95, 0.98], amikacin (SI: 2.49 [0.14, 11.00]; AUC: 0.97 [0.96, 0.99]), kanamycin (SI: 2.26 [0.14, 9.00]; AUC: 0.98 [0.97, 0.99]), levofloxacin (SI: 1.87 [0.11, 9.00]; AUC: 0.95 [0.93, 0.97]), and prothionamide (SI: 2.73 [0.20, 7.00]; AUC: 0.87 [0.84, 0.90]). Meanwhile, Mykrobe demonstrated superior accuracy specifically for moxifloxacin (SI: 3.96 [0.11, 13.00]; AUC: 0.97 [0.95, 0.98]). Lastly, TGS-TB had the best efficacy in predicting resistance to pyrazinamide (SI: 12.53 [1.67, 17.00]; AUC: 0.97 [0.95, 0.98]), capreomycin (SI: 4.22 [0.08, 15.00]; AUC: 1.00 [0.98, 1.00]), and ethionamide (SI: 2.15 [0.33, 7.00]; AUC: 0.96 [0.94, 0.98]). TBProfiler, TGS-TB, Mykrobe, PhyResSE and SAM-TB have all demonstrated outstanding accuracy in predicting resistance to anti-TB drugs. In particular, TBProfiler stood out for its exceptional performance in predicting resistance to most anti-TB drugs, while TGS-TB excelled in predicting resistance to pyrazinamide and certain second-line drugs. The efficacy of SAM-TB requires further investigation to fully establish its reliability and effectiveness. To ensure the accuracy and reliability of genotypic drug susceptibility testing, bioinformatics tools should be refined and adapted continuously to accommodate novel and current resistance-associated mutations.

Suggested Citation

  • Ya-Li Chen & Yu He & Victor Naestholt Dahl & Kan Yu & Yan-An Zhang & Cui-Ping Guan & Mao-Shui Wang, 2025. "Diagnostic yield of nine user-friendly bioinformatics tools for predicting Mycobacterium tuberculosis drug resistance: A systematic review and network meta-analysis," PLOS Global Public Health, Public Library of Science, vol. 5(4), pages 1-18, April.
  • Handle: RePEc:plo:pgph00:0004465
    DOI: 10.1371/journal.pgph.0004465
    as

    Download full text from publisher

    File URL: https://journals.plos.org/globalpublichealth/article?id=10.1371/journal.pgph.0004465
    Download Restriction: no

    File URL: https://journals.plos.org/globalpublichealth/article/file?id=10.1371/journal.pgph.0004465&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgph.0004465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgph00:0004465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: globalpubhealth (email available below). General contact details of provider: https://journals.plos.org/globalpublichealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.