Author
Listed:
- Negin Ashrafi
- Sahar Yousefi
- Guy Roger Aby
- Salah F Issa
- Houshang Darabi
- Kamiar Alaei
- Greg Placencia
- Maryam Pishgar
Abstract
Introduction: Despite tremendous efforts, including research, teaching, and extension, toward improving the safety of agricultural tractor drivers, the number of incidents related to agricultural tractor drivers has not declined. This evidence points out an urgent need to explore artificial intelligence (AI) solutions to improve the safety of tractor drivers. Methods: This paper uses 171 Fatality Assessment and Control Evaluation (FACE) reports related to tractor drivers and a new framework called Risk Evolution, Detection, Evaluation, and Control of Accidents (REDECA) to identify existing AI solutions, such as machine learning models for predictive maintenance, sensor-based monitoring, computer vision, and automated safety interventions, and specific areas where AI solutions are missed and can be developed to reduce incidents and recovery time. Fatality reports of tractor drivers were categorized into six main categories, including run over, pinned by/ Crushed and entanglement, fall, fire, roll over, and overturn. Each category was then subcategorized based on similarities of incident causes in the reports. Results: The application of the REDECA framework, which categorizes risk states into R1 (safe), R2 (hazard exposure), and R3 (incident), revealed potential AI solutions that could improve the safety of tractor drivers. In all categories, the REDECA framework lacks AI solutions for three elements, including the probability of reducing recovery time in R3, detecting changes between R2 and R3, and intervention to send workers to R2. Most of the categories were missing AI solutions for interventions to prevent entry to the R3 element of the REDECA. In addition, the fall, roll over, and overturn categories lacked AI intervention that minimized damage and recovery in R3. Conclusions: The outcome of this study shows an urgent need to develop AI solutions to improve tractor driver safety.
Suggested Citation
Negin Ashrafi & Sahar Yousefi & Guy Roger Aby & Salah F Issa & Houshang Darabi & Kamiar Alaei & Greg Placencia & Maryam Pishgar, 2025.
"AI-driven solutions to improve safety and health: Application of the REDECA framework for agricultural tractor drivers,"
PLOS Global Public Health, Public Library of Science, vol. 5(6), pages 1-13, June.
Handle:
RePEc:plo:pgph00:0003543
DOI: 10.1371/journal.pgph.0003543
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgph00:0003543. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: globalpubhealth (email available below). General contact details of provider: https://journals.plos.org/globalpublichealth .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.