IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1011770.html
   My bibliography  Save this article

Systematically identification of survival-associated eQTLs in a Japanese kidney cancer cohort

Author

Listed:
  • Xiya Song
  • Han Jin
  • Xiangyu Li
  • Meng Yuan
  • Hong Yang
  • Yusuke Sato
  • Haruki Kume
  • Seishi Ogawa
  • Cheng Zhang
  • Adil Mardinoglu

Abstract

Background: Clear cell renal carcinoma (ccRCC) is the predominant form of kidney cancer, but the prognostic value of expression quantitative trait loci (eQTLs) remains underexplored, particularly in Asian populations. Objective: We analyzed whole-exome sequencing and RNA sequencing data from 100 Japanese ccRCC patients to identify eQTLs. Multiple Cox proportional hazard models assessed survival associations, with validation in the Cancer Genome Atlas ccRCC cohort (n = 287). Results: We identified 805 eGenes and 4,558 cis-eQTLs in the Japanese cohort. Survival analysis revealed a total of 9 eGenes significantly associated with overall survival (FDR

Suggested Citation

  • Xiya Song & Han Jin & Xiangyu Li & Meng Yuan & Hong Yang & Yusuke Sato & Haruki Kume & Seishi Ogawa & Cheng Zhang & Adil Mardinoglu, 2025. "Systematically identification of survival-associated eQTLs in a Japanese kidney cancer cohort," PLOS Genetics, Public Library of Science, vol. 21(7), pages 1-28, July.
  • Handle: RePEc:plo:pgen00:1011770
    DOI: 10.1371/journal.pgen.1011770
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011770
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1011770&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1011770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kate Lawrenson & Qiyuan Li & Siddhartha Kar & Ji-Heui Seo & Jonathan Tyrer & Tassja J. Spindler & Janet Lee & Yibu Chen & Alison Karst & Ronny Drapkin & Katja K. H. Aben & Hoda Anton-Culver & Natalia , 2015. "Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    2. Ghislaine Scelo & Mark P. Purdue & Kevin M. Brown & Mattias Johansson & Zhaoming Wang & Jeanette E. Eckel-Passow & Yuanqing Ye & Jonathan N. Hofmann & Jiyeon Choi & Matthieu Foll & Valerie Gaborieau &, 2017. "Genome-wide association study identifies multiple risk loci for renal cell carcinoma," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanhuan Cui & Hongyang Yi & Hongyu Bao & Ying Tan & Chi Tian & Xinyao Shi & Diwen Gan & Bin Zhang & Weizheng Liang & Rui Chen & Qionghua Zhu & Liang Fang & Xin Gao & Hongda Huang & Ruijun Tian & Silk, 2022. "The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Qian Xiao & Joseph Mears & Aparna Nathan & Kazuyoshi Ishigaki & Yuriy Baglaenko & Noha Lim & Laura A. Cooney & Kristina M. Harris & Mark S. Anderson & David A. Fox & Dawn E. Smilek & James G. Krueger , 2023. "Immunosuppression causes dynamic changes in expression QTLs in psoriatic skin," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Yaohua Yang & Yaxin Chen & Shuai Xu & Xingyi Guo & Guochong Jia & Jie Ping & Xiang Shu & Tianying Zhao & Fangcheng Yuan & Gang Wang & Yufang Xie & Hang Ci & Hongmo Liu & Yawen Qi & Yongjun Liu & Dan L, 2024. "Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Karl Smith-Byrne & Åsa Hedman & Marios Dimitriou & Trishna Desai & Alexandr V. Sokolov & Helgi B. Schioth & Mine Koprulu & Maik Pietzner & Claudia Langenberg & Joshua Atkins & Ricardo Cortez Penha & J, 2024. "Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Molly Went & Amit Sud & Charlie Mills & Abi Hyde & Richard Culliford & Philip Law & Jayaram Vijayakrishnan & Ines Gockel & Carlo Maj & Johannes Schumacher & Claire Palles & Martin Kaiser & Richard Hou, 2024. "Phenome-wide Mendelian randomisation analysis of 378,142 cases reveals risk factors for eight common cancers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1011770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.