IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1010546.html
   My bibliography  Save this article

Review and further developments in statistical corrections for Winner’s Curse in genetic association studies

Author

Listed:
  • Amanda Forde
  • Gibran Hemani
  • John Ferguson

Abstract

Genome-wide association studies (GWAS) are commonly used to identify genomic variants that are associated with complex traits, and estimate the magnitude of this association for each variant. However, it has been widely observed that the association estimates of variants tend to be lower in a replication study than in the study that discovered those associations. A phenomenon known as Winner’s Curse is responsible for this upward bias present in association estimates of significant variants in the discovery study. We review existing Winner’s Curse correction methods which require only GWAS summary statistics in order to make adjustments. In addition, we propose modifications to improve existing methods and propose a novel approach which uses the parametric bootstrap. We evaluate and compare methods, first using a wide variety of simulated data sets and then, using real data sets for three different traits. The metric, estimated mean squared error (MSE) over significant SNPs, was primarily used for method assessment. Our results indicate that widely used conditional likelihood based methods tend to perform poorly. The other considered methods behave much more similarly, with our proposed bootstrap method demonstrating very competitive performance. To complement this review, we have developed an R package, ‘winnerscurse’ which can be used to implement these various Winner’s Curse adjustment methods to GWAS summary statistics.Author summary: A genome-wide association study is designed to analyse many common genetic variants in thousands of samples and identify which variants are associated with a trait of interest. It provides estimates of association strength for each variant and variants are classified as associated if their test statistics obtained in the study pass a chosen significance threshold. However, due to a phenomenon known as Winner’s Curse, the association estimates of these significant variants tend to be upward biased and greater in magnitude than their true values. Naturally, this bias has adverse consequences for downstream statistical techniques which use these estimates. In this paper, we look at current methods which have been designed to combat Winner’s Curse and propose modifications to these methods in order to improve performance. Using a wide variety of simulated data sets as well as real data, we perform a thorough evaluation of these methods. We use a metric which allows us to identify which methods, on average, produce adjusted estimates for significant variants that are closest to the true values. To accompany our work, we have created an R package, ‘winnerscurse’, which allows users to easily apply Winner’s Curse correction methods to their data sets.

Suggested Citation

  • Amanda Forde & Gibran Hemani & John Ferguson, 2023. "Review and further developments in statistical corrections for Winner’s Curse in genetic association studies," PLOS Genetics, Public Library of Science, vol. 19(9), pages 1-29, September.
  • Handle: RePEc:plo:pgen00:1010546
    DOI: 10.1371/journal.pgen.1010546
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010546
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1010546&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1010546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1010546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.