Author
Listed:
- Xing Wu
- Wei Jiang
- Christopher Fragoso
- Jing Huang
- Geyu Zhou
- Hongyu Zhao
- Stephen Dellaporta
Abstract
Genome wide association studies (GWAS) can play an essential role in understanding genetic basis of complex traits in plants and animals. Conventional SNP-based linear mixed models (LMM) that marginally test single nucleotide polymorphisms (SNPs) have successfully identified many loci with major and minor effects in many GWAS. In plant, the relatively small population size in GWAS and the high genetic diversity found in many plant species can impede mapping efforts on complex traits. Here we present a novel haplotype-based trait fine-mapping framework, HapFM, to supplement current GWAS methods. HapFM uses genotype data to partition the genome into haplotype blocks, identifies haplotype clusters within each block, and then performs genome-wide haplotype fine-mapping to prioritize the candidate causal haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM, GMMAT, and BLINK in both simulated and real plant GWAS datasets. HapFM consistently resulted in higher mapping power than the other GWAS methods in high polygenicity simulation setting. Moreover, it resulted in smaller mapping intervals, especially in regions of high LD, achieved by prioritizing small candidate causal blocks in the larger haplotype blocks. In the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared to GEMMA’s results, and the average mapping interval of HapFM was 9.6 times smaller than that of GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high mapping power on complex traits and improved on mapping resolution to facilitate crop improvement.Author summary: Genome-wide association studies (GWAS) are commonly used in human and plant studies to identify genetic variants responsible for the phenotype of interest and provide foundations for studying disease mechanisms and crop improvement. Most GWAS models are developed and optimized using human datasets. However, the difference between human and plant datasets essentially limits their applications in plant studies, especially when mapping complex traits such as drought resistance and yield. In this study, we present a novel GWAS method, HapFM, tailored for plant datasets to overcome the difficulties of many conventional GWAS methods. HapFM resulted in higher statistical power than conventional GWAS methods for mapping complex traits in our simulation and real dataset analyses. In addition, HapFM reduced the mapping interval by prioritizing candidate causal regions in the genome, which benefits the downstream experimental studies. Last but not least, HapFM can incorporate biological annotations to increase statistical power further. Overall, HapFM balances statistical power, result interpretability, and downstream experimental verifiability.
Suggested Citation
Xing Wu & Wei Jiang & Christopher Fragoso & Jing Huang & Geyu Zhou & Hongyu Zhao & Stephen Dellaporta, 2022.
"Prioritized candidate causal haplotype blocks in plant genome-wide association studies,"
PLOS Genetics, Public Library of Science, vol. 18(10), pages 1-25, October.
Handle:
RePEc:plo:pgen00:1010437
DOI: 10.1371/journal.pgen.1010437
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1010437. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.