IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1010388.html
   My bibliography  Save this article

Localized variation in ancestral admixture identifies pilocytic astrocytoma risk loci among Latino children

Author

Listed:
  • Shaobo Li
  • Charleston W K Chiang
  • Swe Swe Myint
  • Katti Arroyo
  • Tsz Fung Chan
  • Libby Morimoto
  • Catherine Metayer
  • Adam J de Smith
  • Kyle M Walsh
  • Joseph L Wiemels

Abstract

Background: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. PA has at least a 50% higher incidence in populations of European ancestry compared to other ancestral groups, which may be due in part to genetic differences. Methods: We first compared the global proportions of European, African, and Amerindian ancestries in 301 PA cases and 1185 controls of self-identified Latino ethnicity from the California Biobank. We then conducted admixture mapping analysis to assess PA risk with local ancestry. Results: We found PA cases had a significantly higher proportion of global European ancestry than controls (case median = 0.55, control median = 0.51, P value = 3.5x10-3). Admixture mapping identified 13 SNPs in the 6q14.3 region (SNX14) contributing to risk, as well as three other peaks approaching significance on chromosomes 7, 10 and 13. Downstream fine mapping in these regions revealed several SNPs potentially contributing to childhood PA risk. Conclusions: There is a significant difference in genomic ancestry associated with Latino PA risk and several genomic loci potentially mediating this risk. Author summary: Childhood brain tumors are among the most prevalent and lethal childhood cancers. Despite this, the epidemiology as well as genetic risks are not well defined. For example, children of European ancestry have a higher risk of contracting pilocytic astrocytoma (PA) compared to other ancestries, but the genetic or environmental basis for this is unknown. Latino children are a mixture of multiple ancestries including European, African, and Native American. Using a group of Californian Latino children, we show that the risk of PA increases when a Latino child has a higher proportion of European ancestry. This global ancestry difference shows that germline genetic risk alleles contribute to a higher PA risk in children of European descendent. Moreover, this ancestral risk is localized to specific regions of the genome, especially in Chromosome 6 near the SNX14 gene, which is associated with cancer-related growth signaling pathway described by MAPK/ERK. This result brings us one step closer to understanding the etiology of this common childhood brain tumor.

Suggested Citation

  • Shaobo Li & Charleston W K Chiang & Swe Swe Myint & Katti Arroyo & Tsz Fung Chan & Libby Morimoto & Catherine Metayer & Adam J de Smith & Kyle M Walsh & Joseph L Wiemels, 2022. "Localized variation in ancestral admixture identifies pilocytic astrocytoma risk loci among Latino children," PLOS Genetics, Public Library of Science, vol. 18(9), pages 1-13, September.
  • Handle: RePEc:plo:pgen00:1010388
    DOI: 10.1371/journal.pgen.1010388
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010388
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1010388&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1010388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zachary J. Reitman & Brenton R. Paolella & Guillaume Bergthold & Kristine Pelton & Sarah Becker & Robert Jones & Claire E. Sinai & Hayley Malkin & Ying Huang & Leslie Grimmet & Zachary T. Herbert & Yu, 2019. "Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Kyung Lee & Nasim Azizgolshani & Ze Zhang & Laurent Perreard & Fred W. Kolling & Lananh N. Nguyen & George J. Zanazzi & Lucas A. Salas & Brock C. Christensen, 2024. "Associations in cell type-specific hydroxymethylation and transcriptional alterations of pediatric central nervous system tumors," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Rasha Barakat & Jit Chatterjee & Rui Mu & Xuanhe Qi & Xingxing Gu & Igor Smirnov & Olivia Cobb & Karen Gao & Angelica Barnes & Jonathan Kipnis & David H. Gutmann, 2024. "Human single cell RNA-sequencing reveals a targetable CD8+ exhausted T cell population that maintains mouse low-grade glioma growth," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Min Kyung Lee & Nasim Azizgolshani & Joshua A. Shapiro & Lananh N. Nguyen & Fred W. Kolling & George J. Zanazzi & Hildreth Robert Frost & Brock C. Christensen, 2024. "Identifying tumor type and cell type-specific gene expression alterations in pediatric central nervous system tumors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Romain Sigaud & Thomas K. Albert & Caroline Hess & Thomas Hielscher & Nadine Winkler & Daniela Kocher & Carolin Walter & Daniel Münter & Florian Selt & Diren Usta & Jonas Ecker & Angela Brentrup & Mar, 2023. "MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1010388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.