IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1010251.html
   My bibliography  Save this article

EPIC: Inferring relevant cell types for complex traits by integrating genome-wide association studies and single-cell RNA sequencing

Author

Listed:
  • Rujin Wang
  • Dan-Yu Lin
  • Yuchao Jiang

Abstract

More than a decade of genome-wide association studies (GWASs) have identified genetic risk variants that are significantly associated with complex traits. Emerging evidence suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types to elucidate disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical framework that relates large-scale GWAS summary statistics to cell-type-specific gene expression measurements from single-cell RNA sequencing (scRNA-seq). We derive powerful gene-level test statistics for common and rare variants, separately and jointly, and adopt generalized least squares to prioritize trait-relevant cell types while accounting for the correlation structures both within and between genes. Using enrichment of loci associated with four lipid traits in the liver and enrichment of loci associated with three neurological disorders in the brain as ground truths, we show that EPIC outperforms existing methods. We apply our framework to multiple scRNA-seq datasets from different platforms and identify cell types underlying type 2 diabetes and schizophrenia. The enrichment is replicated using independent GWAS and scRNA-seq datasets and further validated using PubMed search and existing bulk case-control testing results.Author summary: Genome-wide association studies (GWASs) have yielded genetic variants associated with various complex traits. Emerging evidence suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific fashion. For many complex traits, however, the specific cell or tissue types leading to risk are unknown. Recent advances of single-cell RNA sequencing (scRNA-seq) provide unprecedented opportunities, alongside challenges, to systematically investigate the cell-type-specific enrichment of GWAS risk variants. We propose EPIC, a statistical framework that relates large-scale GWAS summary statistics to cell-type-specific transcriptomic measurements from scRNA-seq data to prioritize trait-relevant cell types. We use known trait-relevant tissues and cell types as ground truths for benchmark, adopt independent GWAS and scRNA-seq datasets for reproducibility, and refer to PubMed keyword search and existing case-control studies for validation. Such an integrative analysis helps elucidate the underlying cell-type-specific disease etiology and prioritize important risk variants.

Suggested Citation

  • Rujin Wang & Dan-Yu Lin & Yuchao Jiang, 2022. "EPIC: Inferring relevant cell types for complex traits by integrating genome-wide association studies and single-cell RNA sequencing," PLOS Genetics, Public Library of Science, vol. 18(6), pages 1-22, June.
  • Handle: RePEc:plo:pgen00:1010251
    DOI: 10.1371/journal.pgen.1010251
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010251
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1010251&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1010251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alvaro N. Barbeira & Scott P. Dickinson & Rodrigo Bonazzola & Jiamao Zheng & Heather E. Wheeler & Jason M. Torres & Eric S. Torstenson & Kaanan P. Shah & Tzintzuni Garcia & Todd L. Edwards & Eli A. St, 2018. "Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics," Nature Communications, Nature, vol. 9(1), pages 1-20, December.
    2. repec:plo:pmed00:1001779 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gökberk Alagöz & Else Eising & Yasmina Mekki & Giacomo Bignardi & Pierre Fontanillas & Michel G. Nivard & Michelle Luciano & Nancy J. Cox & Simon E. Fisher & Reyna L. Gordon, 2025. "The shared genetic architecture and evolution of human language and musical rhythm," Nature Human Behaviour, Nature, vol. 9(2), pages 376-390, February.
    2. Michael G. Levin & Noah L. Tsao & Pankhuri Singhal & Chang Liu & Ha My T. Vy & Ishan Paranjpe & Joshua D. Backman & Tiffany R. Bellomo & William P. Bone & Kiran J. Biddinger & Qin Hui & Ozan Dikilitas, 2022. "Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Richard Burns & William J. Young & Nay Aung & Luis R. Lopes & Perry M. Elliott & Petros Syrris & Roberto Barriales-Villa & Catrin Sohrabi & Steffen E. Petersen & Julia Ramírez & Alistair Young & Patri, 2024. "Genetic basis of right and left ventricular heart shape," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. repec:plo:pone00:0220827 is not listed on IDEAS
    5. Corbin Quick & Xiaoquan Wen & Gonçalo Abecasis & Michael Boehnke & Hyun Min Kang, 2020. "Integrating comprehensive functional annotations to boost power and accuracy in gene-based association analysis," PLOS Genetics, Public Library of Science, vol. 16(12), pages 1-23, December.
    6. Xena Marie Mapel & Naveen Kumar Kadri & Alexander S. Leonard & Qiongyu He & Audald Lloret-Villas & Meenu Bhati & Maya Hiltpold & Hubert Pausch, 2024. "Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. William J. Young & Jeffrey Haessler & Jan-Walter Benjamins & Linda Repetto & Jie Yao & Aaron Isaacs & Andrew R. Harper & Julia Ramirez & Sophie Garnier & Stefan Duijvenboden & Antoine R. Baldassari & , 2023. "Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Han Zhang & Lu Deng & William Wheeler & Jing Qin & Kai Yu, 2022. "Integrative analysis of multiple case‐control studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1080-1091, September.
    9. Yaohua Yang & Yaxin Chen & Shuai Xu & Xingyi Guo & Guochong Jia & Jie Ping & Xiang Shu & Tianying Zhao & Fangcheng Yuan & Gang Wang & Yufang Xie & Hang Ci & Hongmo Liu & Yawen Qi & Yongjun Liu & Dan L, 2024. "Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Xinyuan Dong & Yu-Ru Su & Richard Barfield & Stephanie A Bien & Qianchuan He & Tabitha A Harrison & Jeroen R Huyghe & Temitope O Keku & Noralane M Lindor & Clemens Schafmayer & Andrew T Chan & Stephen, 2020. "A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-21, August.
    11. Benjamin J. Schmiedel & Job Rocha & Cristian Gonzalez-Colin & Sourya Bhattacharyya & Ariel Madrigal & Christian H. Ottensmeier & Ferhat Ay & Vivek Chandra & Pandurangan Vijayanand, 2021. "COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Xiaoguang Xu & Chachrit Khunsriraksakul & James M. Eales & Sebastien Rubin & David Scannali & Sushant Saluja & David Talavera & Havell Markus & Lida Wang & Maciej Drzal & Akhlaq Maan & Abigail C. Lay , 2024. "Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    13. Yanyu Xiao & Jingjing Wang & Jiaqi Li & Peijing Zhang & Jingyu Li & Yincong Zhou & Qing Zhou & Ming Chen & Xin Sheng & Zhihong Liu & Xiaoping Han & Guoji Guo, 2023. "An analytical framework for decoding cell type-specific genetic variation of gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Max Lam & Chia-Yen Chen & W. David Hill & Charley Xia & Ruoyu Tian & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Alexander S. Hatoum & Hailiang Huang & Anil K. Malhotra & Heiko Runz & Tian Ge, 2022. "Collective genomic segments with differential pleiotropic patterns between cognitive dimensions and psychopathology," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    15. Sébastien Thériault & Zhonglin Li & Erik Abner & Jian’an Luan & Hasanga D. Manikpurage & Ursula Houessou & Pardis Zamani & Mewen Briend & Dominique K. Boudreau & Nathalie Gaudreault & Lily Frenette & , 2024. "Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Kevin L Keys & Angel C Y Mak & Marquitta J White & Walter L Eckalbar & Andrew W Dahl & Joel Mefford & Anna V Mikhaylova & María G Contreras & Jennifer R Elhawary & Celeste Eng & Donglei Hu & Scott Hun, 2020. "On the cross-population generalizability of gene expression prediction models," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-28, August.
    17. Satoko Namba & Michio Iwata & Shin-Ichi Nureki & Noriko Yuyama Otani & Yoshihiro Yamanishi, 2025. "Therapeutic target prediction for orphan diseases integrating genome-wide and transcriptome-wide association studies," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    18. Yu Wang & Nan Liang & Ge Gao, 2024. "Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Bingxin Zhao & Fei Zou & Hongtu Zhu, 2023. "Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(2), pages 841-853, June.
    20. Luke M Evans & Christopher H Arehart & Andrew D Grotzinger & Travis J Mize & Maizy S Brasher & Jerry A Stitzel & Marissa A Ehringer & Charles A Hoeffer, 2023. "Transcriptome-wide gene-gene interaction associations elucidate pathways and functional enrichment of complex traits," PLOS Genetics, Public Library of Science, vol. 19(5), pages 1-32, May.
    21. Xiaoyu Song & Jiayi Ji & Joseph H. Rothstein & Stacey E. Alexeeff & Lori C. Sakoda & Adriana Sistig & Ninah Achacoso & Eric Jorgenson & Alice S. Whittemore & Robert J. Klein & Laurel A. Habel & Pei Wa, 2023. "MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1010251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.