IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1007889.html
   My bibliography  Save this article

Integrating predicted transcriptome from multiple tissues improves association detection

Author

Listed:
  • Alvaro N Barbeira
  • Milton Pividori
  • Jiamao Zheng
  • Heather E Wheeler
  • Dan L Nicolae
  • Hae Kyung Im

Abstract

Integration of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies is needed to improve our understanding of the biological mechanisms underlying GWAS hits, and our ability to identify therapeutic targets. Gene-level association methods such as PrediXcan can prioritize candidate targets. However, limited eQTL sample sizes and absence of relevant developmental and disease context restrict our ability to detect associations. Here we propose an efficient statistical method (MultiXcan) that leverages the substantial sharing of eQTLs across tissues and contexts to improve our ability to identify potential target genes. MultiXcan integrates evidence across multiple panels using multivariate regression, which naturally takes into account the correlation structure. We apply our method to simulated and real traits from the UK Biobank and show that, in realistic settings, we can detect a larger set of significantly associated genes than using each panel separately. To improve applicability, we developed a summary result-based extension called S-MultiXcan, which we show yields highly concordant results with the individual level version when LD is well matched. Our multivariate model-based approach allowed us to use the individual level results as a gold standard to calibrate and develop a robust implementation of the summary-based extension. Results from our analysis as well as software and necessary resources to apply our method are publicly available.Author summary: We develop a new method, MultiXcan, to test the mediating role of gene expression variation on complex traits, integrating information available across multiple tissue studies. We show this approach has higher power than traditional single-tissue methods. We extend this method to use only summary-statistics from public GWAS. We apply these methods to 222 complex traits available in the UK Biobank cohort, and 109 complex traits from public GWAS and discuss the findings.

Suggested Citation

  • Alvaro N Barbeira & Milton Pividori & Jiamao Zheng & Heather E Wheeler & Dan L Nicolae & Hae Kyung Im, 2019. "Integrating predicted transcriptome from multiple tissues improves association detection," PLOS Genetics, Public Library of Science, vol. 15(1), pages 1-20, January.
  • Handle: RePEc:plo:pgen00:1007889
    DOI: 10.1371/journal.pgen.1007889
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007889
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007889&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1007889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helian Feng & Nicholas Mancuso & Alexander Gusev & Arunabha Majumdar & Megan Major & Bogdan Pasaniuc & Peter Kraft, 2021. "Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies," PLOS Genetics, Public Library of Science, vol. 17(4), pages 1-21, April.
    2. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Mike Thompson & Mary Grace Gordon & Andrew Lu & Anchit Tandon & Eran Halperin & Alexander Gusev & Chun Jimmie Ye & Brunilda Balliu & Noah Zaitlen, 2022. "Multi-context genetic modeling of transcriptional regulation resolves novel disease loci," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Benjamin J. Schmiedel & Job Rocha & Cristian Gonzalez-Colin & Sourya Bhattacharyya & Ariel Madrigal & Christian H. Ottensmeier & Ferhat Ay & Vivek Chandra & Pandurangan Vijayanand, 2021. "COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Linda Ottensmann & Rubina Tabassum & Sanni E. Ruotsalainen & Mathias J. Gerl & Christian Klose & Elisabeth Widén & Kai Simons & Samuli Ripatti & Matti Pirinen, 2023. "Genome-wide association analysis of plasma lipidome identifies 495 genetic associations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Angela Andaleon & Lauren S Mogil & Heather E Wheeler, 2019. "Genetically regulated gene expression underlies lipid traits in Hispanic cohorts," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-21, August.
    7. Ashley Budu-Aggrey & Anna Kilanowski & Maria K. Sobczyk & Suyash S. Shringarpure & Ruth Mitchell & Kadri Reis & Anu Reigo & Reedik Mägi & Mari Nelis & Nao Tanaka & Ben M. Brumpton & Laurent F. Thomas , 2023. "European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Diptavo Dutta & Yuan He & Ashis Saha & Marios Arvanitis & Alexis Battle & Nilanjan Chatterjee, 2022. "Aggregative trans-eQTL analysis detects trait-specific target gene sets in whole blood," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1007889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.