IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002794.html
   My bibliography  Save this article

Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

Author

Listed:
  • Alexandra Dumitriu
  • Jeanne C Latourelle
  • Tiffany C Hadzi
  • Nathan Pankratz
  • Dan Garza
  • John P Miller
  • Jeffery M Vance
  • Tatiana Foroud
  • Thomas G Beach
  • Richard H Myers

Abstract

Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms. Author Summary: Parkinson disease (PD) is a neurodegenerative disease, which impairs the motor and cognitive abilities of affected individuals. Although the involvement of specific genes in the disease process has been recognized, the underlying genetic mechanisms are not yet understood. One common investigation approach for PD has been the comparison of gene expression levels in brain tissue from PD cases with those from neurologically healthy controls. We performed such an expression analysis in prefrontal cortex tissue from a set of 27 PD and 26 control samples. One of the 489 differentially expressed genes, forkhead box O1 (FOXO1), is involved in transcriptional regulation. Notably, the set of differentially expressed genes identified in our study was enriched for genes regulated by the FoxO1 protein. Analyses of DNA sequence variants known as single-nucleotide polymorphisms (SNPs) in the FOXO1 region, as well as of PD–relevant SNPs across the genome, suggest functional connections between this gene and 1) the age at onset in PD, and 2) the spermine oxidase (SMOX) gene. These findings implicate the involvement of FOXO1 in PD pathogenesis.

Suggested Citation

  • Alexandra Dumitriu & Jeanne C Latourelle & Tiffany C Hadzi & Nathan Pankratz & Dan Garza & John P Miller & Jeffery M Vance & Tatiana Foroud & Thomas G Beach & Richard H Myers, 2012. "Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation," PLOS Genetics, Public Library of Science, vol. 8(6), pages 1-11, June.
  • Handle: RePEc:plo:pgen00:1002794
    DOI: 10.1371/journal.pgen.1002794
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002794
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002794&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yvonne J K Edwards & Gary W Beecham & William K Scott & Sawsan Khuri & Guney Bademci & Demet Tekin & Eden R Martin & Zhijie Jiang & Deborah C Mash & Jarlath ffrench-Mullen & Margaret A Pericak-Vance &, 2011. "Identifying Consensus Disease Pathways in Parkinson's Disease Using an Integrative Systems Biology Approach," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002794. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.