IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002078.html
   My bibliography  Save this article

Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue

Author

Listed:
  • Federico Innocenti
  • Gregory M Cooper
  • Ian B Stanaway
  • Eric R Gamazon
  • Joshua D Smith
  • Snezana Mirkov
  • Jacqueline Ramirez
  • Wanqing Liu
  • Yvonne S Lin
  • Cliona Moloney
  • Shelly Force Aldred
  • Nathan D Trinklein
  • Erin Schuetz
  • Deborah A Nickerson
  • Ken E Thummel
  • Mark J Rieder
  • Allan E Rettie
  • Mark J Ratain
  • Nancy J Cox
  • Christopher D Brown

Abstract

The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ∼30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits. Author Summary: Many disease-associated genetic variants do not alter protein sequences and are difficult to precisely identify. Discovery of expression quantitative trait loci (eQTL), or correlations between genetic variants and gene expression levels, offers one means of addressing this challenge. However, eQTL studies in primary cells have several shortcomings. In particular, their reproducibility is largely unknown, the variables that generate unreliable associations are uncharacterized, and the resolution of their findings is constrained by linkage disequilibrium. We performed a three-way replication study of eQTLs in primary human livers. We demonstrated that ∼67% of cis-eQTL associations are replicated in an independent study and that known polymorphisms overlapping expression probes, SNP-to-gene distance, and unmeasured confounding variables all influence the replication rate. We fine-mapped 14 eQTLs and identified causative polymorphisms in the promoter or 3′UTR for 3 genes, suggesting that a considerable fraction of eQTLs are driven by proximal variants that are amenable to functional isolation. Finally, we found hundreds of overlaps between SNPs associated with complex traits and replicated eQTL SNPs. Our data provide both cautionary (i.e. non-reproducibility of many strong eQTLs) and optimistic (i.e. precise identification of functional non-coding variants) forecasts for future eQTL analyses and the complex traits that they influence.

Suggested Citation

  • Federico Innocenti & Gregory M Cooper & Ian B Stanaway & Eric R Gamazon & Joshua D Smith & Snezana Mirkov & Jacqueline Ramirez & Wanqing Liu & Yvonne S Lin & Cliona Moloney & Shelly Force Aldred & Nat, 2011. "Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue," PLOS Genetics, Public Library of Science, vol. 7(5), pages 1-16, May.
  • Handle: RePEc:plo:pgen00:1002078
    DOI: 10.1371/journal.pgen.1002078
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002078
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002078&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.