Author
Listed:
- Maximiliano Mollura
- Davide Chicco
- Alessia Paglialonga
- Riccardo Barbieri
Abstract
Background: Systemic inflammatory response syndrome (SIRS) and sepsis are the most common causes of in-hospital death. However, the characteristics associated with the improvement in the patient conditions during the ICU stay were not fully elucidated for each population as well as the possible differences between the two. Goal: The aim of this study is to highlight the differences between the prognostic clinical features for the survival of patients diagnosed with SIRS and those of patients diagnosed with sepsis by using a multi-variable predictive modeling approach with a reduced set of easily available measurements collected at the admission to the intensive care unit (ICU). Methods: Data were collected from 1,257 patients (816 non-sepsis SIRS and 441 sepsis) admitted to the ICU. We compared the performance of five machine learning models in predicting patient survival. Matthews correlation coefficient (MCC) was used to evaluate model performances and feature importance, and by applying Monte Carlo stratified Cross-Validation. Results: Extreme Gradient Boosting (MCC = 0.489) and Logistic Regression (MCC = 0.533) achieved the highest results for SIRS and sepsis cohorts, respectively. In order of importance, APACHE II, mean platelet volume (MPV), eosinophil counts (EoC), and C-reactive protein (CRP) showed higher importance for predicting sepsis patient survival, whereas, SOFA, APACHE II, platelet counts (PLTC), and CRP obtained higher importance in the SIRS cohort. Conclusion: By using complete blood count parameters as predictors of ICU patient survival, machine learning models can accurately predict the survival of SIRS and sepsis ICU patients. Interestingly, feature importance highlights the role of CRP and APACHE II in both SIRS and sepsis populations. In addition, MPV and EoC are shown to be important features for the sepsis population only, whereas SOFA and PLTC have higher importance for SIRS patients. Author summary: Sepsis is defined as the dysregulated host response to infection causing a significant increase in patients’ mortality, thus resulting in an important global health problem. Systemic inflammatory response syndrome (SIRS), an exaggerated response of the body to a noxious stressor, and sepsis, an organ dysfunction caused by a dysregulated host response to infection, are two of the most critical conditions in the intensive care unit showing high patients’ mortality and resulting in an important global health problem. However, the major differences leading to an improvement in the patient conditions during SIRS and sepsis are not fully elucidated.
Suggested Citation
Maximiliano Mollura & Davide Chicco & Alessia Paglialonga & Riccardo Barbieri, 2024.
"Identifying prognostic factors for survival in intensive care unit patients with SIRS or sepsis by machine learning analysis on electronic health records,"
PLOS Digital Health, Public Library of Science, vol. 3(3), pages 1-16, March.
Handle:
RePEc:plo:pdig00:0000459
DOI: 10.1371/journal.pdig.0000459
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000459. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.