IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000436.html
   My bibliography  Save this article

A recurrent neural network and parallel hidden Markov model algorithm to segment and detect heart murmurs in phonocardiograms

Author

Listed:
  • Andrew McDonald
  • Mark J F Gales
  • Anurag Agarwal

Abstract

The detection of heart disease using a stethoscope requires significant skill and time, making it expensive and impractical for widespread screening in low-resource environments. Machine learning analysis of heart sound recordings can improve upon the accessibility and accuracy of diagnoses, but existing approaches require further validation on larger and more representative clinical datasets. For many previous algorithms, segmenting the signal into its individual sound components is a key first step. However, segmentation algorithms often struggle to find S1 or S2 sounds in the presence of strong murmurs or noise that significantly alter or mask the expected sound. Segmentation errors then propagate to the subsequent disease classifier steps. We propose a novel recurrent neural network and hidden semi-Markov model (HSMM) algorithm that can both segment the signal and detect a heart murmur, removing the need for a two-stage algorithm. This algorithm formed the ‘CUED_Acoustics’ entry to the 2022 George B. Moody PhysioNet challenge, where it won the first prize in both the challenge tasks. The algorithm’s performance exceeded that of many end-to-end deep learning approaches that struggled to generalise to new test data. As our approach both segments the heart sound and detects a murmur, it can provide interpretable predictions for a clinician. The model also estimates the signal quality of the recording, which may be useful for a screening environment where non-experts are using a stethoscope. These properties make the algorithm a promising tool for screening of abnormal heart murmurs.Author summary: The use of machine learning algorithms to detect heart disease from sound recordings has great potential to enable widespread and low-skill screening, improving early detection and treatment. The area has seen increasing interest in recent years, with many novel algorithms inspired by deep learning advancements in other fields. However, the size of heart sound datasets remains small, making deep learning models particularly susceptible to overfitting. In addition, the performance of these algorithms has rarely been directly compared on unseen data. We describe a novel lightweight algorithm to detect and classify murmurs in heart sound recordings. This algorithm was the winning entry into the George B. Moody PhysioNet 2022 challenge, beating many complex deep-learning approaches. Our approach both detects and localises the murmur, providing an interpretable result for a clinician.

Suggested Citation

  • Andrew McDonald & Mark J F Gales & Anurag Agarwal, 2024. "A recurrent neural network and parallel hidden Markov model algorithm to segment and detect heart murmurs in phonocardiograms," PLOS Digital Health, Public Library of Science, vol. 3(11), pages 1-20, November.
  • Handle: RePEc:plo:pdig00:0000436
    DOI: 10.1371/journal.pdig.0000436
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000436
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000436&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.