Author
Listed:
- Rajenki Das
- Mark Muldoon
- Mark Lunt
- John McBeth
- Belay Birlie Yimer
- Thomas House
Abstract
It is well-known that mood and pain interact with each other, however individual-level variability in this relationship has been less well quantified than overall associations between low mood and pain. Here, we leverage the possibilities presented by mobile health data, in particular the “Cloudy with a Chance of Pain” study, which collected longitudinal data from the residents of the UK with chronic pain conditions. Participants used an App to record self-reported measures of factors including mood, pain and sleep quality. The richness of these data allows us to perform model-based clustering of the data as a mixture of Markov processes. Through this analysis we discover four endotypes with distinct patterns of co-evolution of mood and pain over time. The differences between endotypes are sufficiently large to play a role in clinical hypothesis generation for personalised treatments of comorbid pain and low mood.Author summary: Mood and pain are known to interact, and a mobile-phone application recorded information on the variations of mood and pain amongst people in the UK. Using this data, we observed that people have a general tendency of feeling the same mood and pain the next day. Studying further, we were able to separate the people into four groups- three of which were quite different from the general pattern of mood pain. The additional patterns we saw were 1) their mood and pain deteriorating the next day, 2) their mood and pain improving the next day and 3) mood is improving but pain deteriorates the next day. These additional characteristics tell us that there is no definite way that mood and pain are associated for everyone, and personalised treatment to tackle challenges in mood and pain can deliver better results.
Suggested Citation
Rajenki Das & Mark Muldoon & Mark Lunt & John McBeth & Belay Birlie Yimer & Thomas House, 2023.
"Modelling and classifying joint trajectories of self-reported mood and pain in a large cohort study,"
PLOS Digital Health, Public Library of Science, vol. 2(3), pages 1-16, March.
Handle:
RePEc:plo:pdig00:0000204
DOI: 10.1371/journal.pdig.0000204
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000204. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.