Author
Listed:
- Yifan Yao
- Scott Pauls
- Duncan Foley
- Tomoko Yoshikawa
- Sato Honma
- Ken-Ichi Honma
- Ellie McVeigh
- Nicolas C Foley
- Rae Silver
Abstract
The suprachiasmatic nucleus (SCN), locus of a circadian clock, is a small nucleus of approximately 20,000 neurons that oscillate with a period of about 24 hours. While individual neurons produce circadian oscillations even when dispersed in culture, the coherence and robustness of oscillation of the SCN as a whole is dependent on its circuitry. Surprisingly, the individual neurons of the intact SCN do not all oscillate in phase with each other. To understand the oscillatory dynamics across the intact nucleus, we develop a model of the relation of the phase of neurons to their PER2 expression at a particular subjective time (CT1900) using time series data from SCN slice preparations. Next, we use the model, which produces a surprisingly good fit in the SCN slice data, to estimate oscillator phase at a single time point (CT1900) in snapshot data from PER2 expression measurements in intact, unsliced SCN-wide tissue. To monitor temporal changes in phase in time series data, we use PER2::LUC imaging in an ex vivo SCN slice preparation. To study phase in the intact SCN at a fixed time point we use data generated by PER2 staining and a tissue clearing protocol. Because PER2 expression, as measured in the time series slices and the snapshot intact SCN are not directly comparable, the model estimated from time series slices to the snapshot intact SCN data requires a calibrating constant. The results indicate that our model provides a surprisingly good fit to the SCN slice data and is therefore a meaningful method for estimating phase in the intact SCN snapshot data, permitting the study of virtual interventions such as virtual tissue slicing. We next compare oscillation in circuits in the SCN-wide tissue to those that have been disrupted by virtual slicing using a Kuramoto model to simulate the dynamics. The results support prior evidence that the damage done by coronal slicing has the most disruptive impact on SCN oscillation, while horizontal slicing has the least damage. The results point to the importance of connectivity along the caudal-to-rostral axis and indicate that SCN circuit organization depends on the caudal-to-rostral flow of information. In summary, the construction of this model is a major finding of the paper. Our modeling allows us to perform the previously impossible analysis of oscillatory dynamics in static data in an intact SCN captured at a single time point.Author summary: A mammal’s internal circadian clock, critical to its function and survival, is created and maintained by the suprachiasmatic nucleus (SCN). The SCN comprises about 20,000 oscillatory neurons that, due to their connectivity, synchronize to the external cycle of day and night. Understanding the dynamics of the oscillation of the tissue provides evidence of how the SCN encodes information about the environment such as daylength and seasonality.
Suggested Citation
Yifan Yao & Scott Pauls & Duncan Foley & Tomoko Yoshikawa & Sato Honma & Ken-Ichi Honma & Ellie McVeigh & Nicolas C Foley & Rae Silver, 2025.
"Suprachiasmatic nucleus-wide estimation of oscillatory temporal dynamics,"
PLOS Computational Biology, Public Library of Science, vol. 21(3), pages 1-22, March.
Handle:
RePEc:plo:pcbi00:1012855
DOI: 10.1371/journal.pcbi.1012855
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012855. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.