Author
Listed:
- Diana C de Oliveira
- Hani Cheikh Sleiman
- Kelly Payette
- Jana Hutter
- Lisa Story
- Joseph V Hajnal
- Daniel C Alexander
- Rebecca J Shipley
- Paddy J Slator
Abstract
The placenta is crucial for a successful pregnancy, facilitating oxygen exchange and nutrient transport between mother and fetus. Complications like fetal growth restriction and pre-eclampsia are linked to placental vascular structure abnormalities, highlighting the need for early detection of placental health issues. Computational modelling offers insights into how vascular architecture correlates with flow and oxygenation in both healthy and dysfunctional placentas. These models use synthetic networks to represent the multiscale feto-placental vasculature, but current methods lack direct control over key morphological parameters like branching angles, essential for predicting placental dysfunction.We introduce a novel generative algorithm for creating in silico placentas, allowing user-controlled customisation of feto-placental vasculatures, both as individual components (placental shape, chorionic vessels, placentone) and as a complete structure. The algorithm is physiologically underpinned, following branching laws (i.e. Murray’s Law), and is defined by four key morphometric statistics: vessel diameter, vessel length, branching angle and asymmetry. Our algorithm produces structures consistent with in vivo measurements and ex vivo observations. Our sensitivity analysis highlights how vessel length variations and branching angles play a pivotal role in defining the architecture of the placental vascular network. Moreover, our approach is stochastic in nature, yielding vascular structures with different topological metrics when imposing the same input settings. Unlike previous volume-filling algorithms, our approach allows direct control over key morphological parameters, generating vascular structures that closely resemble real vascular densities and allowing for the investigation of the impact of morphological parameters on placental function in upcoming studies.Author summary: The placenta is important in ensuring a healthy pregnancy by facilitating the exchange of oxygen and nutrients between the mother and the fetus. Disturbances of placental function are often associated with abnormalities in the placental vascular structure, and detecting these issues early on is crucial. To understand the connection between placental vascular architecture, blood flow, and oxygenation, computational models have been used. These use synthetic networks which lack precise control over crucial morphological parameters, such as branching angles, essential for predicting placental dysfunction. Our contribution is a new approach that allows for the creation of virtual placentas that closely resemble real vascular characteristics. It enables users to customize the feto-placental vascular architecture at various levels, including individual components like placental shape, chorionic vessels, and placentone, as well as the complete structure. The flexibility of this pipeline opens the door for investigating the direct impact of morphological parameters on placental function.
Suggested Citation
Diana C de Oliveira & Hani Cheikh Sleiman & Kelly Payette & Jana Hutter & Lisa Story & Joseph V Hajnal & Daniel C Alexander & Rebecca J Shipley & Paddy J Slator, 2024.
"A flexible generative algorithm for growing in silico placentas,"
PLOS Computational Biology, Public Library of Science, vol. 20(10), pages 1-45, October.
Handle:
RePEc:plo:pcbi00:1012470
DOI: 10.1371/journal.pcbi.1012470
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012470. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.