IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012399.html
   My bibliography  Save this article

iCRBP-LKHA: Large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites

Author

Listed:
  • Lin Yuan
  • Ling Zhao
  • Jinling Lai
  • Yufeng Jiang
  • Qinhu Zhang
  • Zhen Shen
  • Chun-Hou Zheng
  • De-Shuang Huang

Abstract

Circular RNAs (circRNAs) play vital roles in transcription and translation. Identification of circRNA-RBP (RNA-binding protein) interaction sites has become a fundamental step in molecular and cell biology. Deep learning (DL)-based methods have been proposed to predict circRNA-RBP interaction sites and achieved impressive identification performance. However, those methods cannot effectively capture long-distance dependencies, and cannot effectively utilize the interaction information of multiple features. To overcome those limitations, we propose a DL-based model iCRBP-LKHA using deep hybrid networks for identifying circRNA-RBP interaction sites. iCRBP-LKHA adopts five encoding schemes. Meanwhile, the neural network architecture, which consists of large kernel convolutional neural network (LKCNN), convolutional block attention module with one-dimensional convolution (CBAM-1D) and bidirectional gating recurrent unit (BiGRU), can explore local information, global context information and multiple features interaction information automatically. To verify the effectiveness of iCRBP-LKHA, we compared its performance with shallow learning algorithms on 37 circRNAs datasets and 37 circRNAs stringent datasets. And we compared its performance with state-of-the-art DL-based methods on 37 circRNAs datasets, 37 circRNAs stringent datasets and 31 linear RNAs datasets. The experimental results not only show that iCRBP-LKHA outperforms other competing methods, but also demonstrate the potential of this model in identifying other RNA-RBP interaction sites.Author summary: The interaction between circRNAs and RBPs is one of the main activities of circRNAs. CircRNAs participate in the occurrence and development of diseases by interacting with RBPs. Identifying circRNA-RBP interaction sites have become a fundamental step for exploring the role of circRNA in the occurrence and progression of diseases. Many computational methods have been proposed to predict circRNA-RBP interaction sites. Nevertheless, they still have several limitations. For long nucleotide sequence data of circRNA, traditional CNN or LSTM cannot effectively capture long-distance dependencies (relationships between non-adjacent nucleotides in a circRNA). Furthermore, existing methods fail to effectively utilize the interaction information of multiple features, and insufficient consideration of interaction information leads to biased circRNA-RBP interaction relationships. To overcome these limitations, we propose iCRBP-LKHA, based on a large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites. We compared its performance with state-of-the-art DL-based methods on 37 circRNAs datasets, 37 circRNAs stringent datasets and 31 linear RNAs datasets. Experimental results not only show that iCRBP-LKHA outperforms competing methods, but also demonstrate the potential of this model in identifying other RNA-RBP interaction sites.

Suggested Citation

  • Lin Yuan & Ling Zhao & Jinling Lai & Yufeng Jiang & Qinhu Zhang & Zhen Shen & Chun-Hou Zheng & De-Shuang Huang, 2024. "iCRBP-LKHA: Large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites," PLOS Computational Biology, Public Library of Science, vol. 20(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1012399
    DOI: 10.1371/journal.pcbi.1012399
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012399
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012399&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.