IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012276.html
   My bibliography  Save this article

Generating information-dense promoter sequences with optimal string packing

Author

Listed:
  • Virgile Andreani
  • Eric J South
  • Mary J Dunlop

Abstract

Dense arrangements of binding sites within nucleotide sequences can collectively influence downstream transcription rates or initiate biomolecular interactions. For example, natural promoter regions can harbor many overlapping transcription factor binding sites that influence the rate of transcription initiation. Despite the prevalence of overlapping binding sites in nature, rapid design of nucleotide sequences with many overlapping sites remains a challenge. Here, we show that this is an NP-hard problem, coined here as the nucleotide String Packing Problem (SPP). We then introduce a computational technique that efficiently assembles sets of DNA-protein binding sites into dense, contiguous stretches of double-stranded DNA. For the efficient design of nucleotide sequences spanning hundreds of base pairs, we reduce the SPP to an Orienteering Problem with integer distances, and then leverage modern integer linear programming solvers. Our method optimally packs sets of 20–100 binding sites into dense nucleotide arrays of 50–300 base pairs in 0.05–10 seconds. Unlike approximation algorithms or meta-heuristics, our approach finds provably optimal solutions. We demonstrate how our method can generate large sets of diverse sequences suitable for library generation, where the frequency of binding site usage across the returned sequences can be controlled by modulating the objective function. As an example, we then show how adding additional constraints, like the inclusion of sequence elements with fixed positions, allows for the design of bacterial promoters. The nucleotide string packing approach we present can accelerate the design of sequences with complex DNA-protein interactions. When used in combination with synthesis and high-throughput screening, this design strategy could help interrogate how complex binding site arrangements impact either gene expression or biomolecular mechanisms in varied cellular contexts.Author summary: The way protein binding sites are arranged on DNA can influence the regulation and transcription of downstream genes. Areas with a high concentration of binding sites can enable complex interplay between transcription factors, a feature that is exploited by natural promoters. However, designing synthetic promoters that contain dense arrangements of binding sites is a challenge. The task involves overlapping many binding sites, each typically about 10 nucleotides long, within a constrained sequence area, which becomes increasingly difficult as sequence length decreases and binding site variety increases. We introduce an approach to design nucleotide sequences with optimally packed protein binding sites, which we call the nucleotide String Packing Problem (SPP). We show that the SPP can be solved efficiently using integer linear programming to identify the densest arrangements of binding sites for a specified sequence length. We show how adding additional constraints, like the inclusion of sequence elements with fixed positions, allows for the design of bacterial promoters. The presented approach enables the rapid design and study of nucleotide sequences with complex, dense binding site architectures.

Suggested Citation

  • Virgile Andreani & Eric J South & Mary J Dunlop, 2024. "Generating information-dense promoter sequences with optimal string packing," PLOS Computational Biology, Public Library of Science, vol. 20(7), pages 1-22, July.
  • Handle: RePEc:plo:pcbi00:1012276
    DOI: 10.1371/journal.pcbi.1012276
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012276
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012276&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Travis L. LaFleur & Ayaan Hossain & Howard M. Salis, 2022. "Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erin A. Essington & Grace E. Vezeau & Daniel P. Cetnar & Emily Grandinette & Terrence H. Bell & Howard M. Salis, 2024. "An autonomous microbial sensor enables long-term detection of TNT explosive in natural soil," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Daniel P. Cetnar & Ayaan Hossain & Grace E. Vezeau & Howard M. Salis, 2024. "Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Bin Shao & Jiawei Yan, 2024. "A long-context language model for deciphering and generating bacteriophage genomes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.