Author
Listed:
- Nikhil Phaniraj
- Rahel K Brügger
- Judith M Burkart
Abstract
Synchronization is widespread in animals, and studies have often emphasized how this seemingly complex phenomenon can emerge from very simple rules. However, the amount of flexibility and control that animals might have over synchronization properties, such as the strength of coupling, remains underexplored. Here, we studied how pairs of marmoset monkeys coordinated vigilance while feeding. By modeling them as coupled oscillators, we noted that (1) individual marmosets do not show perfect periodicity in vigilance behaviors, (2) nevertheless, marmoset pairs started to take turns being vigilant over time, a case of anti-phase synchrony, (3) marmosets could couple flexibly; the coupling strength varied with every new joint feeding bout, and (4) marmosets could control the coupling strength; dyads showed increased coupling if they began in a more desynchronized state. Such flexibility and control over synchronization require more than simple interaction rules. Minimally, animals must estimate the current degree of asynchrony and adjust their behavior accordingly. Moreover, the fact that each marmoset is inherently non-periodic adds to the cognitive demand. Overall, our study provides a mathematical framework to investigate the cognitive demands involved in coordinating behaviors in animals, regardless of whether individual behaviors are rhythmic or not.Author summary: Research suggests that synchronized animal behaviors often emerge from simple interaction rules. Mathematical models have been instrumental in revealing these underlying rules. Here, we employed mathematical modeling to study how marmoset monkeys coordinate vigilance and feeding behaviors in a situation where doing both actions simultaneously is not possible. We found that pairs of marmosets progress to a state where they show opposite behaviors, i.e., when one individual is feeding, the other is vigilant, and vice-versa. In order to achieve such coordinated state, the individuals must influence each other’s behaviors, i.e., couple. We found that marmosets can couple flexibly and that they couple more strongly if they are initially out-of-sync with their partner. Such ability to detect the current state of synchrony and adapt behavior accordingly is cognitively demanding. Our research thus demostrates that animals with more complex cognitive abilities can do much more than following simple interaction rules to synchronize with other individuals. Overall, our research (1) establishes marmosets as a strong candidate species for studying the cognitive aspects of social timing, (2) provides a novel mathematical framework that is tailored for studying synchronization in biological systems, and (3) underlines the implications of synchrony for marmosets and other animals.
Suggested Citation
Nikhil Phaniraj & Rahel K Brügger & Judith M Burkart, 2024.
"Marmosets mutually compensate for differences in rhythms when coordinating vigilance,"
PLOS Computational Biology, Public Library of Science, vol. 20(5), pages 1-26, May.
Handle:
RePEc:plo:pcbi00:1012104
DOI: 10.1371/journal.pcbi.1012104
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.