IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012097.html
   My bibliography  Save this article

A Computational Framework for Understanding the Impact of Prior Experiences on Pain Perception and Neuropathic Pain

Author

Listed:
  • Malin Ramne
  • Jon Sensinger

Abstract

Pain perception is influenced not only by sensory input from afferent neurons but also by cognitive factors such as prior expectations. It has been suggested that overly precise priors may be a key contributing factor to chronic pain states such as neuropathic pain. However, it remains an open question how overly precise priors in favor of pain might arise. Here, we first verify that a Bayesian approach can describe how statistical integration of prior expectations and sensory input results in pain phenomena such as placebo hypoalgesia, nocebo hyperalgesia, chronic pain, and spontaneous neuropathic pain. Our results indicate that the value of the prior, which is determined by the internal model parameters, may be a key contributor to these phenomena. Next, we apply a hierarchical Bayesian approach to update the parameters of the internal model based on the difference between the predicted and the perceived pain, to reflect that people integrate prior experiences in their future expectations. In contrast with simpler approaches, this hierarchical model structure is able to show for placebo hypoalgesia and nocebo hyperalgesia how these phenomena can arise from prior experiences in the form of a classical conditioning procedure. We also demonstrate the phenomenon of offset analgesia, in which a disproportionally large pain decrease is obtained following a minor reduction in noxious stimulus intensity. Finally, we turn to simulations of neuropathic pain, where our hierarchical model corroborates that persistent non-neuropathic pain is a risk factor for developing neuropathic pain following denervation, and additionally offers an interesting prediction that complete absence of informative painful experiences could be a similar risk factor. Taken together, these results provide insight to how prior experiences may contribute to pain perception, in both experimental and neuropathic pain, which in turn might be informative for improving strategies of pain prevention and relief.Author summary: To efficiently navigate the world and avoid harmful situations, it is beneficial to learn from prior pain experiences. This learning process typically results in certain contexts being associated with an expected level of pain, which subsequently influences pain perception. While this process of pain anticipation has evolved as a mechanism for avoiding harm, recent research indicates overly precise expectations of pain may in fact contribute to certain chronic pain conditions, in which pain persists even after tissue damage has healed, or even arises without any initiating injury. However, it remains an open question how prior experiences contribute to such overly precise expectations of pain. Here, we mathematically model the pain-learning-process. Our model successfully describes several counterintuitive but well-documented pain phenomena. We also make predictions of how prior experiences may contribute to the perception of pain and how the same learning process could be leveraged to improve strategies of pain prevention and relief.

Suggested Citation

  • Malin Ramne & Jon Sensinger, 2024. "A Computational Framework for Understanding the Impact of Prior Experiences on Pain Perception and Neuropathic Pain," PLOS Computational Biology, Public Library of Science, vol. 20(10), pages 1-25, October.
  • Handle: RePEc:plo:pcbi00:1012097
    DOI: 10.1371/journal.pcbi.1012097
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012097
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012097&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pcbi00:1002524 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.