IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012053.html
   My bibliography  Save this article

Removing direct photocurrent artifacts in optogenetic connectivity mapping data via constrained matrix factorization

Author

Listed:
  • Benjamin Antin
  • Masato Sadahiro
  • Marta Gajowa
  • Marcus A Triplett
  • Hillel Adesnik
  • Liam Paninski

Abstract

Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections. For many cell types, nearby connections are those we expect to be strongest. However, when the postsynaptic cell expresses opsin, optical excitation of nearby cells can induce direct photocurrents in the postsynaptic cell. These photocurrent artifacts contaminate synaptic currents, making it difficult or impossible to probe connectivity for nearby cells. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are less variable than those of synaptic currents. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available as open source software.Author summary: Mapping the presence and strength of connections between neurons is necessary for understanding how the structure of neural circuits gives rise to their function. Historically, directly measuring these connections has required difficult and time-consuming paired-patch experiments. However, recent developments in the field of two-photon optogenetics enable mapping experiments with much higher throughput. In these new experiments, a single postsynaptic neuron is recorded using an electrode, and a two-photon laser is used to optogenetically activate nearby neurons. When the laser activates a connected presynaptic neuron, the experimenter observes an electrical current on the electrode. The size of the current can then be used to determine the strength of the connection. However, this technique has a drawback: when stimulating near the postsynaptic cell, the laser can directly evoke an electrical current—called a photocurrent—even if no connection is present. This is problematic because it confounds estimates of connectivity. In this work, we developed a computational tool which removes the photocurrent artifact while preserving signals corresponding to true neuronal connections. We expect that this tool will serve as a resource for experimentalists, enabling a more complete picture of synaptic connectivity.

Suggested Citation

  • Benjamin Antin & Masato Sadahiro & Marta Gajowa & Marcus A Triplett & Hillel Adesnik & Liam Paninski, 2024. "Removing direct photocurrent artifacts in optogenetic connectivity mapping data via constrained matrix factorization," PLOS Computational Biology, Public Library of Science, vol. 20(5), pages 1-32, May.
  • Handle: RePEc:plo:pcbi00:1012053
    DOI: 10.1371/journal.pcbi.1012053
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012053
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012053&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    2. GILLIS, Nicolas & GLINEUR, François, 2009. "Using underapproximations for sparse nonnegative matrix factorization," LIDAM Discussion Papers CORE 2009006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Gonzalo E Mena & Lauren E Grosberg & Sasidhar Madugula & Paweł Hottowy & Alan Litke & John Cunningham & E J Chichilnisky & Liam Paninski, 2017. "Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-33, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Mitchell Clough & Ichun Anderson Chen & Seong-Wook Park & Allison M. Ahrens & Jeffrey N. Stirman & Spencer L. Smith & Jerry L. Chen, 2021. "Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Gillis, Nicolas & Glineur, François & Tuyttens, Daniel & Vandaele, Arnaud, 2015. "Heuristics for exact nonnegative matrix factorization," LIDAM Discussion Papers CORE 2015006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Daniel U Campos-Delgado & Omar Gutierrez-Navarro & Ricardo Salinas-Martinez & Elvis Duran & Aldo R Mejia-Rodriguez & Miguel J Velazquez-Duran & Javier A Jo, 2021. "Blind deconvolution estimation by multi-exponential models and alternated least squares approximations: Free-form and sparse approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-29, March.
    7. Sean Jewell & Paul Fearnhead & Daniela Witten, 2022. "Testing for a change in mean after changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1082-1104, September.
    8. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Nicolas Gillis & Stephen A. Vavasis, 2018. "On the Complexity of Robust PCA and ℓ 1 -Norm Low-Rank Matrix Approximation," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1072-1084, November.
    10. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    11. David G. Lee & Caroline A. McLachlan & Ramon Nogueira & Osung Kwon & Alanna E. Carey & Garrett House & Gavin D. Lagani & Danielle LaMay & Stefano Fusi & Jerry L. Chen, 2024. "Perirhinal cortex learns a predictive map of the task environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Alexandra T. Keinath & Coralie-Anne Mosser & Mark P. Brandon, 2022. "The representation of context in mouse hippocampus is preserved despite neural drift," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Philipp Berens & Jeremy Freeman & Thomas Deneux & Nikolay Chenkov & Thomas McColgan & Artur Speiser & Jakob H Macke & Srinivas C Turaga & Patrick Mineault & Peter Rupprecht & Stephan Gerhard & Rainer , 2018. "Community-based benchmarking improves spike rate inference from two-photon calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-13, May.
    14. Daniel M. Virga & Stevie Hamilton & Bertha Osei & Abigail Morgan & Parker Kneis & Emiliano Zamponi & Natalie J. Park & Victoria L. Hewitt & David Zhang & Kevin C. Gonzalez & Fiona M. Russell & D. Grah, 2024. "Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Ignacio Alonso & Irina Scheer & Mélanie Palacio-Manzano & Noémie Frézel-Jacob & Antoine Philippides & Mario Prsa, 2023. "Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Sasa Teng & Fenghua Zhen & Li Wang & Jose Canovas Schalchli & Jane Simko & Xinyue Chen & Hao Jin & Christopher D. Makinson & Yueqing Peng, 2022. "Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Pieter M. Goltstein & David Laubender & Tobias Bonhoeffer & Mark Hübener, 2025. "A column-like organization for ocular dominance in mouse visual cortex," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Yanjun Sun & Lisa M. Giocomo, 2022. "Neural circuit dynamics of drug-context associative learning in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Sudiksha Sridhar & Eric Lowet & Howard J. Gritton & Jennifer Freire & Chengqian Zhou & Florence Liang & Xue Han, 2024. "Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.