Author
Abstract
With recent methodological advances in the field of computational protein design, in particular those based on deep learning, there is an increasing need for frameworks that allow for coherent, direct integration of different models and objective functions into the generative design process. Here we demonstrate how evolutionary multiobjective optimization techniques can be adapted to provide such an approach. With the established Non-dominated Sorting Genetic Algorithm II (NSGA-II) as the optimization framework, we use AlphaFold2 and ProteinMPNN confidence metrics to define the objective space, and a mutation operator composed of ESM-1v and ProteinMPNN to rank and then redesign the least favorable positions. Using the two-state design problem of the foldswitching protein RfaH as an in-depth case study, and PapD and calmodulin as examples of higher-dimensional design problems, we show that the evolutionary multiobjective optimization approach leads to significant reduction in the bias and variance in RfaH native sequence recovery, compared to a direct application of ProteinMPNN. We suggest that this improvement is due to three factors: (i) the use of an informative mutation operator that accelerates the sequence space exploration, (ii) the parallel, iterative design process inherent to the genetic algorithm that improves upon the ProteinMPNN autoregressive sequence decoding scheme, and (iii) the explicit approximation of the Pareto front that leads to optimal design candidates representing diverse tradeoff conditions. We anticipate this approach to be readily adaptable to different models and broadly relevant for protein design tasks with complex specifications.Author summary: Proteins are the fundamental building blocks of life, and engineering them has broad applications in medicine and biotechnology. Computational methods that seek to model and predict the protein sequence-structure-function relationship have seen significant advancement from the recent development in deep learning. As more models become available, it remains an open question how to effectively combine them into a coherent computational design approach. One approach is to perform computational design with one model, and filter the design candidates with the others. In this work, we demonstrate how an optimization algorithm inspired by evolution can be adapted to provide an alternative framework that outperforms the post hoc filtering approach, especially for problems with multiple competing design specifications. Such a framework may enable researchers to more effectively integrate the strengths of different modeling approaches to tackle more complex design problems.
Suggested Citation
Lu Hong & Tanja Kortemme, 2024.
"An integrative approach to protein sequence design through multiobjective optimization,"
PLOS Computational Biology, Public Library of Science, vol. 20(7), pages 1-37, July.
Handle:
RePEc:plo:pcbi00:1011953
DOI: 10.1371/journal.pcbi.1011953
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011953. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.