Author
Listed:
- Moo K Chung
- Shih-Gu Huang
- Ian C Carroll
- Vince D Calhoun
- H Hill Goldsmith
Abstract
We introduce an innovative, data-driven topological data analysis (TDA) technique for estimating the state spaces of dynamically changing functional human brain networks at rest. Our method utilizes the Wasserstein distance to measure topological differences, enabling the clustering of brain networks into distinct topological states. This technique outperforms the commonly used k-means clustering in identifying brain network state spaces by effectively incorporating the temporal dynamics of the data without the need for explicit model specification. We further investigate the genetic underpinnings of these topological features using a twin study design, examining the heritability of such state changes. Our findings suggest that the topology of brain networks, particularly in their dynamic state changes, may hold significant hidden genetic information.Author summary: The paper introduces a new data-driven topological data analysis (TDA) method for studying dynamically changing human functional brain networks obtained from the resting-state functional magnetic resonance imaging (rs-fMRI). Leveraging persistent homology, a multiscale topological approach, we present a framework that incorporates the temporal dimension of brain network data. This allows for a more robust estimation of the topological features of dynamic brain networks.
Suggested Citation
Moo K Chung & Shih-Gu Huang & Ian C Carroll & Vince D Calhoun & H Hill Goldsmith, 2024.
"Topological state-space estimation of functional human brain networks,"
PLOS Computational Biology, Public Library of Science, vol. 20(5), pages 1-33, May.
Handle:
RePEc:plo:pcbi00:1011869
DOI: 10.1371/journal.pcbi.1011869
Download full text from publisher
References listed on IDEAS
- repec:plo:pone00:0013701 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.